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Single Image Super-Resolution (SISR) has been gaining much attention in the field of 

remote sensing. Sparse representation approach is one of the most successfully 

learning-based method for SISR that shows effective result in MS remote sensing 

image. The aim of the proposed work is to develop a fast SISR reconstruction 

framework for multispectral remote sensing images based on dictionary learning and 

sparse representation using Computed Unified Device Architecture (CUDA) enabled 

General-Purpose computing on Graphics Processing Units (GP-GPU) hardware. The 

proposed work is divided into two major parts: Firstly, a novel super-resolution approach 

is developed for multispectral remote sensing images using sparse coding based on 

global and adaptive dictionary learning methods for different upscaling factors. 

Secondly, massively parallel algorithms are designed for dictionary learning and 

reconstruction phases of the proposed method using Open Multiprocessing (OpenMP)-

based muticore parallel processing and CUDA-enabled GP-GPU programming model. In 

the reconstruction phase, high resolution (HR) image is estimated from low resolution 

(LR) image by utilizing overcomplete learned dictionaries. The dictionaries are 

adaptively learned from the given LR images using K-Singular Value Decomposition (K-

SVD). Some feature extraction schemes such as Morphological Component Analysis 

(MCA), first and second order gradient filters are adopted for improving the performance. 

The proposed method is implemented first on a multicore parallel paradigm based on 

OpenMP, and then on Intel® Xeon® CPU with NVIDIA Tesla P100 GP-GPU hardware. It 

not only gives better results in terms of visual quality and objective criteria, but also 

significantly reduces the computation time compared to the CPU-based sequential 

counterparts to achieve the near-real time operating speed. 

 

B. SCIENTIFIC/TECHNICAL INFORMATION 

1. Summary of the work carried out in about 500 words 

The proposed work is divided into three major parts: 1) Design and implementation of 

MS image SR (MSISR) based on sparse representations over trained overcomplete 

dictionaries 2) Development of MCA and sparse representations-based MSISR and its 

multicore implementation 3) CUDA-based GP-GPU implementation of MSISR based on 

adaptive dictionary learning and sparse representations.  In the first work, a multispectral 
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image super-resolution method was developed based on sparse representations and 

dictionary learning. It was divided into two phases. In the first phase, global coupled 

dictionary was trained from an external database of multispectral satellite images using 

the K-SVD algorithm. A HR dictionary was prepared from high resolution MS patches, 

while a LR dictionary was prepared from feature patches, which were extracted from LR 

images after applying the high pass filters. In the second phase, the HR MS image was 

reconstructed based on sparse representations using the pre-trained dictionary. The 

results of the proposed MSISR work were compared with bicubic interpolation and the 

Sparse Fusion of Images (SparseFI).  Objective evaluation parameters using Peak 

Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measurement (MSSIM), Erreur 

Relative Globale Adimensionnelle de synthese (ERGAS), Spectral angle mapper (SAM), 

Universal Image Quality Index (Q-index) were computed and compared to validate the 

performance of the proposed work. Since the reconstruction involves considerable time 

due to feature extraction and sparse representation, a fast single-image super-resolution 

technique using OpenMP-based multicore parallel computing technique was 

implemented. The proposed method can reduce the computation time around 10 times.    

The effective feature selection and extraction from the LR image for good dictionary 

construction is one of the important criteria of sparse representation-based model. In the 

second work, an improved feature extraction algorithm was developed for constructing 

efficient dictionary learning and reconstruction. MCA driven feature extraction was used 

for better feature extraction from LR image. Then, a single image SR approach based on 

sparse representation was proposed for MS and PAN images. During SR reconstruction, 

textural features were extracted using MCA for effective sparse representation of 

patches. Next, a coupled over-complete dictionary learning approach was proposed for 

both LR-MS and PAN images. During dictionary learning, principal component analysis 

(PCA) was considered for band reduction. Real remote sensing images from a few 

Indian satellites, RESOURCESAT-2 and CARTOSAT-2, as well as other satellites, such 

as QuickBird, were used in simulations to test the proposed method. The proposed 

method was also compared to those of other current SR methods to determine its 

superiority in terms of both quantitative measurements and visual analysis. To achieve 

near real-time performance, the proposed algorithm was implemented using an 

OpenMP-based multicore parallel processing technique. The proposed algorithm could 

achieve an acceleration up to 12 times.  
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Finally, we developed a fast SISR method for multispectral remote sensing images using 

sparse representations and CUDA-enabled GPU hardware. It was divided into two 

sections: A) Developed a novel framework for multispectral remote sensing image 

processing using the sparse coding and self-example-based dictionary learning method. 

B) Implemented dictionary learning technique (i.e., K-SVD) and the proposed sparse 

optimization on GP-GPU using CUDA programming. Instead of training from external 

HR images, an effective technique can be used to learn the coupled dictionary from the 

given LR image itself. To obtain the improved results and speed, an efficient convex 

optimization technique and improved dictionary learning technique, i.e., K-SVD 

approach was used for SR of multispectral images. Experiments were conducted using 

a few real remote-sensing image databases from the NRSC, ISRO, and a publicly 

available standard remote-sensing database. For quantitative measurements of the 

proposed method, performance evaluation parameters such as PSNR, MSSIM, Q-index, 

SAM, ERGAS, and Spatial Correlation Coefficient (sCC) were performed. For 

standardization and benchmarking, various test images on multispectral image SR were 

tested for different upscaling factors and compared the proposed method with state-of-

the-art methods. The proposed method can perform better both quantitatively as well as 

visually. Parallel implementation of the proposed sparse-based multispectral image SR 

was done in GP-GPU for hardware acceleration. NVIDIA P100 GP-GPU embedded 

hardware with 3584 cores was used with the CUDA programming model to implement 

dictionary learning and sparse reconstruction. The speed up achieved using CUDA-GPU 

based proposed method was upto 10-13x for dictionary learning and 3-185x for 

reconstruction as compared to the sequential CPU counterparts. Furthermore, an 

application of the proposed method was demonstrated with image classification on real 

remote sensing images; features present both in the input LR and reconstructed HR 

image are detected and used for classification and results are compared both for the LR 

and HR images.  

2. Introduction – Background and Objectives 

• Introduction 

Image super-resolution (SR) is a demanding research area in image processing and 

computer vision due to abundance of high-resolution display systems in many vision-

based applications. It is basically used to achieve a HR image from single or multiple 

LR as inputs. SR algorithms can be classified into two categories based on their 
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inputs: single image super-resolution (SISR) and multiple image super-resolution 

(MISR). MISR techniques need a complex registration process in which alignment of 

multiple LR images is required with sub-pixel precision. On the contrary, SISR 

technique is more practical for many real-world applications, such as satellite 

imaging, medical imaging, video surveillance, television display, etc.  

 
Figure 1:  An example of remote sensing image super-resolution 
 
Due to the physical limitation of imaging sensors and complex atmospheric 

disturbances, it is quite challenging to capture a HR image for remote sensing 

applications. Since multispectral (MS) images are obtained at low spatial resolution, 

there are some limitations to deploy these images in various remote sensing 

applications such as environment monitoring, military target identification, etc. To 

overcome these adversities, SR offers a cost-effective technique to produce HR 

images from the LR MS imagery. 

In general, there are many types of SISR approaches, including interpolation-based 

methods [1], reconstruction-based methods [2], and learning-based methods [3]. 

Interpolation-based method usually miss high frequency details supposed to be 

present in target HR images, which leads to jagged artifacts and blurring. Although 

reconstruction methods can recover better edges information, they cannot 

reconstruct effectively when zooming factor is larger. In addition, post processing and 

sophisticated registration process are required for these methods. In recent years, 

SR based on learning methods have become a growing field in image processing [3]-

[9]. In these methods, prior information is extracted between LR and HR image pairs. 

Those methods exhibit good performance because information synthesization is 

done from the image data itself. Since, SISR is an ill-posed problem due to 
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information loss and unique solution is impossible to obtain. Therefore, it needs 

strong prior information about the expected HR images to produce a robust solution 

in SR methods [10] [11].  

 

Learning-based methods can be classified into two sub-categories: external and 

internal example-based learning methods. External example learning-based method 

learns the relationships between HR and LR image patches from similar external 

databases. They are obtained from many known LR and HR image pairs. In the 

internal example learning-based method, a single image is used instead of the 

database. Among external example learning-based algorithms, sparse 

representation based on dictionary learning is one of the most popular methods. 

Sparse representation-based SR method using global dictionary very much depends 

upon the HR images in the training database. Global dictionary might not be able to 

represent all the image patches of the LR image accurately. More image samples 

can be employed to learn the database, but the correctness of information yield by 

the training database for any LR input image cannot be guaranteed. The 

reconstructed HR may seem reasonable, but the information acquired from the 

training database may be irrelevant because the image patches of global dictionary 

are not available during reconstruction. To overcome the above limitations of global 

dictionary, adaptive dictionary has been broadly used to solve the SR problem. In the 

adaptive dictionary learning, only the LR image is used instead of external database 

for dictionary training. It is assumed that many similar image patches may exist both 

within the same and across different scales of the LR image. 

 

Sparse representation-based methods are computationally very intensive due to their 

inverse problem. Additionally, another reason of having slow performance in sparse 

representation-based SR method is that many image patches are being processed 

sequentially. To solve those problems, parallel computing approach can be exploited 

to design highly parallelized algorithms by using graphics processing units (GPU) 

with computed unified device architecture (CUDA) environment for real-time SR 

reconstruction of remote sensing images. Since computation process becomes 

highly exhaustive in MS remote sensing image because of its large dimension, 

CUDA enabled GPU is the best choice to handle this computational problem 
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effectively.  

 

• Background 

Learning-based super-resolution approaches have drawn much attention in recent 

years [3], [4], [8], [9]. In these methods, prior knowledge is exploited from the 

training model to establish an end-to-end mapping between LR and HR images 

patches. The estimated HR image can be restored by adopting the training model 

through the reconstruction phase. Various external example learning-based methods 

have been reported in the literature such as the nearest neighbor embedding 

approach [4], manifold learning [13], sparse coding [14] [16] [17] and deep learning 

[18] [19], etc. Freeman et al. presented a nearest neighbor embedding approach that 

learns a relationship between LR-HR patches and between neighboring HR patches 

using Markov network [4]. But the reconstructed image not only has poor visual 

quality, but also does not have fine structure at the edge. To overcome this, SR 

based on nearest neighbor embedding technique has been proposed by Chang et al. 

[13]. This method has fewer artifacts, only blurring is occurred during LR patch 

matching. On the other hand, sparse coding can give improved reconstruction results 

and outperforms existing previous SR methods. Therefore, sparse coding becomes a 

promising and effective research topic in the field of super-resolution. Sparse coding-

based SR method can be divided into two stages: first, training of sparse 

overcomplete dictionaries and second, reconstruction of the SR image by using the 

sparse representations on a suitable dictionary. According to the database used for 

dictionary training, it can be categorized into two types: global and adaptive 

dictionary based sparse coding methods. Yang et al. proposed 

a SR method using sparse priors; a global dictionary was learned from both LR and 

HR image patches from an external dataset [14]. Zeyde et al. simplified the algorithm 

of Yang et al. that makes the proposed method computationally less heavy and used 

a different training approach for a dictionary pair, i.e., the K-SVD technique [20]. 

Huihui presented a remote sensing SR method, which can reconstruct LR Landsat 

image based on global dictionary and sparse coding algorithm [21]. SPOT5 and 

simulated Landsat TM/ETM+ are used as HR and LR images, respectively to learn 

the dictionary pair using K-SVD. Since global dictionary learning-based SR methods 

are not so favorable for remote sensing application, therefore adaptive dictionary- 
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based methods are used where dictionary is learned using LR-HR image patches 

from a single image. Zhu et al. proposed a fast novel SR algorithm based on sparse 

representation and adaptive dictionary learning [22]. This method gives similar 

results with the state-of-the-art methods, and it is computationally less heavy. Pan et 

al. presented a SR technique for remote sensing images based on compressive 

sensing (CS), structural self-similarity (SSSIM), and dictionary learning [23]. 

 

Recently, parallel implementations of SR methods have been proposed for real-time 

applications [24], [25], [26], [27]. Kulkarni et al. proposed an efficient parallel 

orthogonal matching pursuit algorithm for SR reconstruction. This algorithm is 

platform independent, which was tested on different platforms such as CPUs, GPUs, 

multi-cores, and a Virtex-7 FPGA [24]. They achieved relatively better speed up 

around 2x to 13x, when compared with the previously reported methods. Hanlin et al. 

proposed a fast SISR method with CUDA acceleration [27]. A fast least absolute 

shrinkage and selection operator (LASSO) approximation has been used to estimate 

the sparse code. Results show that LASSO outperforms state-of-the-art methods and 

gives an acceleration up to 6.2x. Remote sensing images consist of several spectral 

bands, thereby their data volume is considerably large. Therefore, it is highly 

computationally exhaustive to restore HR images of high volumetric images. CUDA-

enabled GPU is the best choice to handle this computational problem effectively for 

remote sensing images [28] [29]. Moustafa et al. presented a fast CUDA enabled 

GPU accelerated multispectral image SR using the morphological component 

analysis and adaptive dictionary. This proposed method achieves speedup of around 

2 to 40 for different image sizes. 

 

• Objectives (as per proposal approved by ISRO): 

1. To design single image SR (SISR) algorithms using the concept of parallel 

computing. 

2. To design and develop novel approaches for creating GP-GPU modules for real-

time super- resolution reconstruction of remote sensing images. 

3. To evaluate and compare performances of different algorithms for setting 

benchmarks for super-resolution reconstruction of remote sensing images   
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3. Instrumentation – Development of equipment/hardware 
 

Not applicable 
 

4. Techniques and methods employed for the 
investigation/study including details of development of the 
software 
 

4.1  Sparse Representation model and its formulation for Super-resolution 

In recent years, sparse representation has gained popularity in many fields especially 

in the field of image processing, computer vision, signal processing, and pattern 

recognition. It is found that sparse representation is definitely a beneficial tool for 

image super-resolution, image denoising, and object recognition.  A signal is known 

to be sparse, if there are only a few non-zero elements present in the signal. In 

sparse representation model, a signal 1NX R   can be represented as a linear 

combination of k “atoms” from the over-complete dictionary 
N kD R   with N << k as 

                                                  (1)X D=                                                                  

where 1kR   is the column vector with the weighting sparse co-efficients. The 

signal can be    called as “k-sparse” if only k (k << N) nonzero entities are present in 

the column vector  . The recovery of   from X is an ill-posed problem that cannot 

provide a unique solution. By imposing a prior information or an appropriate 

regularizing constraint, this problem is a sparse representation problem with the l0-

norm minimization, i.e.: 

0
min . .  X=D ,                       (2)s t


 

where 
. 0

refers to the number of non-zero elements present in the vector. The   

optimization problem of Eq. 2 is a non-deterministic polynomial-time hard (NP-hard) 

problem and approximation of its solution is very difficult [30]. In the optimization 

problem, 1l -norm provides the sufficient sparse solution which is equivalent to a 

solution obtained by 0l -norm minimization. Therefore, 1l -norm is used instead of 0l -

norm that converts the non-convex problem into a convex optimization problem, as 

follows: 

                                                 
1

min . .s t


          
2

2
(3)D X −                              
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This is the  basis pursuit denoising (BPDN) problem, which can be efficiently solved 

by using the recently developed fast 1l -minimization algorithms such as the Fast 

Iterative Shrinkage Algorithm (FISTA) [31], LASSO [32]. In super-resolution model, 

the observed LR image X is obtained from the HR image Y based on following 

reconstruction constraint, as follows: 

                                                        (4)X SHY=  

Here, H and S represent the blurring and down-sampling operators, respectively.   

Recovering the HR image Y from the LR image is an ill-posed problem because 

many HR images Y may obey the above equation with the same reconstruction 

constraint. In sparse coding approach for super-resolution, image patches can be 

represented by sparse linear combination of elements from an appropriately chosen 

over-complete dictionary. By considering this observation, patch-wise sparsity prior 

regularization is used to solve the ill-posed problem of Eq. 4. To reconstruct the HR 

image Y, sparse co-efficients can be obtained by using a LR dictionary ( lD ) 

containing corresponding LR image patches taken from the training data. The block 

diagram of sparse representation-based super-resolution for multispectral image is 

shown in Fig. 2. To compute the sparse co-efficients of lX D= , the minimization 

problem can be used: 

                                 
1

min subject to


    
2

2
, (5)lD X −           

By using Lagrange multipliers, the above optimization problem can be reformulated         

to: 

                                     
2

2 1
min , (6)lD X


  − +                                                             

where the regularization parameter is used to trade-off between sparsity of the 

solution and accuracy of the output. Since LR and HR patches share the same 

sparse coefficient vector, the desired HR image patches can be obtained by: 

                                           , (7)hy D =                                                           

Due to noise, the reconstructed HR image 0Y  may not exactly project onto the 

assumed image acquisition model i.e., X = SHY. In order to fit into the imaging model 

accuartely, a global reconstruction constraint is applied on 0Y  by solving the following 

optimization problem using gradient descent method: 

                                   
2 2

2 2
arg min (8)o

Y
Y SHY X C Y Y= − + −  
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Figure 2: Block diagram of Sparse representation based Super-resolution for 
Multispectral Image 
 
 

4.2  Dictionary Learning for Super-resolution: 

Suppose  1 2 3, , ,...l nX x x x x=  and  1 2 3, , ,...h nY y y y y= are sets of related LR and HR 

multispectral images patches in the training dataset. Due to the ill-posed nature of 

super-resolution, this is a challenging task. Assuming that LR and HR MS images 

share the same sparse coefficients, individual HR and LR dictionaries can be learned 

by following minimizations: 

                                   
2

2 1{ , }
arg min

h
h h h

D Z
D Y D Z Z= − + l                                                  (9) 

and 

                                   
2

2 1{ , }
arg min

l
l l l

D Z
D X D Z Z= − + l                                                  (10) 

 
Instead of learning the dictionaries from LR and HR patches separately, a joint 

sparse coding problem for both the types of patches may be defined by combining 

the above equations as follows [9]: 

                           
 

2 2

2 2 1, ,

1 1 1 1
min
h l

h h l l
D D Z

Y D Z X D Z Z
P Q P Q

 
− + − + + 

 
l  ,                              (11) 

where P and Q are the sizes of HR and LR image patch vectors, respectively. The 1l  

norm term 
1

Z  enforces the uniform sparsity for both the dictionaries. The problem in 
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Eq. 11 is solved iteratively to obtain the dictionaries Dh and Dl. The example of HR 
and LR dictionaries are shown in Fig. 3. 
 
 

 
                 Figure 3: Example of HR (left side) and LR (right side) dictionaries 
 

4.3  OpenMP-based Multicore Processing for Super-resolution 

In recent years, the demand for high-computing systems have increased by manifold 

due to regular improvements, upgradations, and development of more 

computationally intensive applications. Increased clock speeds and, more recently, 

the addition of several processor cores on the same chip have been used to improve 

performance. Multicore processors are the latest way in which semiconductor firms 

are concentrating their efforts to improve processor performance. The data-intensive 

parts of sequential programme can be executed in parallel on multi-core processors. 

Multi-core processors have the advantage of consuming less resources and 

providing greater processing power as compared to single-core processors. Each 

core of the homogeneous multicore system has the same configuration and location. 

The Master/Slave model [40], the data flow model [41], and the OpenMP model [42] 

are the three most popular parallel programming models. OpenMP is now commonly 

used in general-purpose processors because of its scalability and versatility. The 

OpenMP implementations use a fork-join model. The master thread oversees 

executing the sequential pieces of a programme. When the master thread enters a 

parallel domain, it forks a group of worker threads that run in parallel with the master 

thread [33]. When the parallel section is over, the programme waits for all threads to 

finish before returning to single-threaded execution for another sequential section. 
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Figure 4 shows OpenMP model based on fork-join paradigm.  

 

 
                              Figure 4. The fork-join paradigm of parallel computing 
 

 
Since, single image SR (SISR) methods based on sparse representations are highly 

computationally intensive as they need to solve several regularization problems for 

dictionary learning as well as sparse reconstructions.  Therefore, the computational 

overhead of SR algorithm is considerably very high in sequential manner. In order to 

reduce the time complexity of the SR algorithm, OpenMP based multicore techniques 

are one of the best parallel paradigms for real-time applications. Based on the fork-

join model of parallelism, the basic idea of implementing parallel sparse based SR 

algorithm using multicore technique with OpenMP tools is shown in Fig. 5. 

 
4.4  CUDA-GPU Parallel Processing for Super-resolution 

Graphics processing unit (GPU) has become a very popular parallel computing 

device for engineering and scientific computing process since parallel processes are 

concurrently executed on hundreds of processor cores and thousands of threads. 

Since computing power of GPUs is highly intensive, they are much faster than the 

CPU. It is specially designed to effectively handle parallel processing required by 

graphics algorithms and video rendering. The computational overhead of the central 

processing unit (CPU) can be reduced by exploiting parallel computational power of 

GPU. The architecture comparison is shown in Fig. 6. 
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                              Figure 5: Multicore parallel SR algorithm 
 

The computational power of GPU can be harnessed with the help of many 

applications program interfaces (APIs) without knowledge of graphics programming 

which allow users to boost the performance of any time consuming and 

computationally heavy algorithms. General-purpose programming on GPU (or 

GPGPU) has become very popular since the introduction of advanced programming 

environments, like CUDA [34], OpenCL [35], and DirectX compute shader [36]. It can 

also increase the computing efficiency of many applications by using existing 

hardware on end-user devices. 

CUDA is a parallel programming platform introduced by NVIDIA in 2007. It is used to 

create software for graphics processors and to create a wide range of general-

purpose applications for GPUs that are extremely parallel in design and run-on 

hundreds of GPU processor cores. The CUDA API enables users to build a huge 

number of threads to run code on the GPU. A block is composed of several threads, 

which are indexed in the block using threadIdx. A grid is arranged in the same way, 
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and each block in a grid is indexed using “blockIdx”. “ThreadIdx” and “blockIdx” are 

both CUDA pre-defined variables. 

 

 
 

Figure 6: Comparison between CPU and GPU architecture 
 

In addition, there are also two pre-defined variables “blockDim” and “gridDim”, 

which are used to specify the size of a block or grid determined by the 

total number of threads per block or the total number of blocks per grid. As seen 

in Fig. 6 all threads in CUDA are arranged [34] into a hierarchical way: block and 

grid. Kernels are specific function used in CUDA programming.  A kernel is a 

function or a complete programme that is called by the CPU. It is run N times in 

parallel on the GPU using N threads. CUDA also supports shared memory and 

thread synchronization. The CUDA programming model combines serial and 

concurrent processing. Fig. 7 depicts an example of this type of heterogeneous 

programming. An ordinary CUDA programme consists of three steps: copying 

data from the CPU/host memory to the device's global memory, execution 

of CUDA codes in kernels, and restoring data from the device memory to the host 

memory. CUDA uses the bottom-up approach of parallelism, with a thread 

serving as an atomic unit of parallelism. 
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Figure 7: Heterogeneous architecture of CUDA and its three-level thread hierarchy 

 
 

Due to inverse problem of sparse-based SR, it is computationally intensive to 

compute sparse co-efficients. Since, input image is divided into multiple feature 

patches by overlapping of one-pixel, super-resolution operation is applied on 

every patch independently.  The processing of image patches is computationally 

very heavy and independent. Those two features make the algorithm appropriate 

to be implemented on GPU. Since CUDA can run the same code for different 

data in parallel, it is an excellent choice to process those image patches 

concurrently. The basic procedure for sparse representation-based SR using 

CUDA-enabled GPU is shown in Fig. 8. 
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Figure 8: Procedure of Single Image Super-resolution based on GPU acceleration 

 

5. Method of Analysis/Methodology 

5.1 Design and implementation of MS image SR (MSISR) based on 

sparse representations and overcomplete dictionaries 

5.1.1 Dictionary Training  

A schematic of the dictionary learning procedure is detailed in Fig. 9. In this work, 

we learned two sparse overcomplete dictionaries by using the K-SVD dictionary 

learning approach on the training dataset that consists of 25 HR panchromatic 

and LR MS remote sensing images. HR dataset consisting of 10x10 size patches 

are extracted from panchromatic images, while feature-patches of size 10x10 are 

extracted from LR multispectral training images. Then on these two sets of patch 

vectors hX  and lX , we apply the K-SVD algorithm [3].  Overcomplete Discrete 

cosine transform (DCT) is used to initialize LR and HR dictionaries lD  and hD  with 

256 atoms. Dictionary learning is done iteratively until convergence, which solves 

a sparse regularization problem by applying the orthogonal matching pursuit 
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(OMP) algorithm. To train lD  and hD  from 50,000 patches, on an average, five K-

SVD iterations are carried out. It takes approximately 3 hrs. for dictionary training. 

          

 
              Figure 9: Schematic of the proposed dictionary learning procedure 

 
5.1.2 Super-resolution Reconstruction 

We developed a SISR algorithm-based on sparse representations for 

multispectral image super-resolution by considering each band of input LR MS 

image separately as shown in Fig. 10. For this, we split the four bands of 

QuickBird MS input image into RED, GREEN, BLUE and Near Infrared (NIR). 

Then each band is reconstructed by using pre-trained LR and HR dictionaries. In 

order fit into the imaging model, a global reconstruction constraint is applied on 

each reconstructed band by solving Eq. 4. Finally, the super-resolved MS is 

obtained by merging all the reconstructed MS bands. In this work, the sparse 

coding problem with the input MS band and LR dictionary lD  is solved by using 

an 1l  minimization based sparse optimization algorithm. The sequential time 

required for two times up-scaling of a 256 x 256 image is around 640 sec, 

whereas the same for a 128 x 128 image is around 154 sec. 
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                                  Figure 10: Schematic of the proposed MSISR 
   

5.1.3 Multicore Parallel Processing Implementation  

Sparse representation-based single image SR (SISR) techniques are 

computationally very intensive as they require several regularization problems to 

be solved for learning the dictionary and reconstructing the desired output. 

Because of the sequential nature of single core processor, it also needs a 

considerable time to process. Since, sizes of remote sensing images are very 

large, HR remote sensing images cannot be obtained by these SR techniques 

within some practical times and will be highly data intensive. To reduce the 

computation time in practical remote sensing applications, like environment 

monitoring, disaster management, etc., we propose a parallel algorithm for sparse 

representation-based SR reconstruction and its implementation using multicore 

programming with OpenMP parallel tool. The given algorithm is modified to 

perform parallel execution in a heavily loaded loop section.  

The sections of the algorithm which exhibits potential parallel operation (e.g., 

single instruction multiple data (SIMD) operation) are exploited to run parallelly 

using a multicore computing system. In the sparse representation-based SR 

algorithm there are three major computationally intensive tasks- patch extraction, 

sparse optimization, and SR reconstructions. We rearrange the sparse based 

algorithm to incorporate loop level parallelism directives of OpenMP into it for 

parallelizing the program.  Instruction for directing a possible parallel loop to 
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execute in multicore style is written as follows: #pragma omp <directive> 

[clauses]. Among different directives, the ‘parallel for’ directive provides loop level 

parallelism in a signal or image processing algorithm in an easy manner. The 

number of threads or cores among which the task is to be divided can be set 

during runtime by using omp_set_num_threads (integer). Algorithm 1 describes 

the implementation of a parallel sparse representation-based image SR (Parallel 

ScSR) algorithm. 

 

 

     

 

 
Sequential Loop       Parellelized Loop 

for(int x = 0; x< input.rows; x++){ 
 for(int y = 0; y< input.rows; y++){ 
     output.at(x,y) = 255 - input.at(x,y); 
 } 
} 

# pragma omp parallel for 
for(int x = 0; x< input.rows; x++){ 
 for(int y = 0; y< input.rows; y++){ 
     output.at(x,y)= 255 - input.at(x,y); 
 } 
} 
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5.2 Multicore Implementation of MS image SR based on MCA and 

Sparse Representation 

5.2.1 MCA-based image decomposition 

Morphological component analysis (MCA) is a technique for extracting textural 

features from images, which reveals the image's high-frequency information [1]. 

In an N N  image  X  , a texture component tX  is supposed to exist 

alongside a structure sX . Two overcomplete dictionaries:  , N L

t sD D R  establish 

sparse representations corresponding to tX  and sX , separately [30], i.e. 

 

                                                     =t t tX D  ,                                                                    (12) 

                                                             =s s sX D ,                                                                    (13) 

 

where t  and s  are the texture and structure components' sparse coefficient 

vectors, respectively. Different transformations, such as the wavelet and the local 

DCT, are used to initialize dictionaries for the texture portion, while the wavelet, 

the curvelets, the contourlets, etc. are used for the structure part. We can write 

                                          t sX X X= + ,                                                                      (14) 

or, 

                                              t t s sX D D = +  ,                                                                (15) 

 

Over a joint dictionary containing both Dt and Ds , MCA finds an optimal sparse 

representation of X as follows: 

                                         
 ,

, arg min
t s

opt opt

t s t s
 

   = +                                       (16) 

                                                
2

2
. . t t s ss t X D D  − −                                    

A total variation (TV) regularisation concept is applied to the unconstrained 

version of (16) for improved recovery of piecewise-smooth artefacts and 

pronounced edges, i.e.        

  
 

2

1 2,
, arg min ( )

t s

opt opt

t s t s t t s s s sX D D TV D
 

        = + + − − +             (17)  

 

Equation (17) is a ℓ1-minimisation problem that is solved iteratively using the 

block-coordinate-relaxation algorithm [31] and a simultaneous sparse 

approximation and dictionary update method [37]. Here,   is the error value, 
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which represents the consistency of the decomposed layers as they are 

approximated. An example of MCA decomposition of an input MS image is shown 

in Fig. 11. 

 

Figure 11:  MCA decomposition results (a) Original image, (b) Structure part, (c) Texture 
part 
 

5.2.2. Multi-spectral image dictionary learning 

 A schematic of the proposed MS image dictionary learning is presented in Fig. 

10. By selecting regions of interests (RoIs) with useful land cover features from 

ortho-rectified GeoTIFF photos, an image database consisting of cropped MS 

images of sizes 512 × 512 and 1024 × 1024 is developed. Each MS image is 

subjected to 2D PCA, after which the bands corresponding to the three highest 

principal components are chosen and converted to an RGB image. The three 

chosen channels are guaranteed to contain approximately 99% of the information 

in the actual MS image. 

Now, to prepare two sets of training patch vectors: hx  and lx , first, the grey-scale 

version of the RGB image is down-sampled and blurred to produce an LR image. 

The optimal upscale ratio for the final SR output of the scheme is equal to the 

down-sampling factor d. The grey-scale image is used to extract HR patch 

vectors hx  of size 2 1n  . LR patch vectors, on the other hand, are made in the 

following manner: using bi-cubic interpolation, the LR image is first up-scaled by 2 

to produce an intermediate HR image. To extract high-frequency features from 

the bi-cubic interpolated image, first perform MCA on the bi-cubic image, which 

provides the image's structure and texture components. We use first- and 

second-order gradients in the horizontal and vertical directions on the texture 

part. As a result, four gradient maps are created, from which four LR feature 
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patches are extracted. Finally, they are concatenated to obtain the LR patch 

vector for training. Thus, the size of a LR feature patch 

lx becomes ( )( )2n 2n × ) × 4) × 1
d d

. We follow the same strategy for different 

zooms in factors. In [4], the authors learnt HR and LR dictionaries, namely, hD  

and lD  from hx  and lx , respectively. Both hx  and lx  are presumed to share a 

similar sparse representation vector z with their respective dictionaries in the 

sparse representation framework, as seen in (18). 

                          
 

2 2

2 12 2, ,

1 1 1 1
min 

 
− + − + + 

 h l

h l

h l
D D Z

x D Z x D Z Z
H L H L

,                         (18)  

 where H and L are the patch vector sizes for HR and LR, respectively, and 2  is 

the regularization parameter. By rearranging hD  and lD  into a joint dictionary, the 

above equation can be simplified. Similarly, hx  and lx  can be seen together. As a 

result, (18) can be rewritten as: 

                                           
 

2

2 12,
min − +

c

c

c
D Z

x D Z Z ,                                                    (19) 

 

where, 

 

                                  

1 1

1 1

h

h

c

c

l

l

x D
H H

x and D

x D
L L

   
   
   = =
   
   
   

 

 

The K-SVD dictionary learning technique [32] is used to solve equation (19) since 

it solves the following two steps alternately. 

• Sparse coding step: The dictionary is randomly initialized, and then it finds 

the sparse representation vector iz  for each patch vector ix  using this 

dictionary. This can be solved using a variety of sparse representation 

algorithms, such as greedy algorithms (e.g. matching pursuit (MP), OMP) or 

convex relaxation algorithms (e.g. BP).  

• Dictionary update step: The next step is to update the dictionary using the 

sparse representations estimated above. There are many methods to choose 
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from, but the K-SVD-based approach is the most popular. Here, each column 

of dictionary di is updated for above-obtained sparse vector iz   by minimizing 

the error term 
2

2i i ix d z−  iteratively. 

Since, it is simpler and can be trained with a wide number of sample patches, the 

K-SVD approach has benefits. A coupled K-SVD dictionary preparation for the 

PAN image database could be done in the same way as the training from MS 

images. For the PAN image, we can start using the proposed learning method at 

the patch extraction point, as seen in Fig. 12. PCA-based band reduction and 

RGB image conversion from MS images are not needed in this situation. Fig. 13 

shows a visual representation of trained HR and LR dictionaries. 

 
 

 
Figure 12:  Multispectral image overcomplete dictionary learning 

5.2.3 SR image reconstruction  

The proposed approach solves two regularisation problems using the trained 

dictionary: one is to find a patch-wise sparse solution and the other is to 

approximate the super-resolved output using the image formation model as a 

global prior. Sparse reconstruction is done separately for each MS band. Each 

LR-MS band is applied to MCA separately to extract texture and cartoon 

components. The texture image ‘ tX ’ has a variety of high-frequency features, it 

favors sparse representation. The structure or cartoon image ‘ sX ’, on the other 

hand, includes low-frequency structural information that is upscaled to a size 
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equal to the size of the proposed super-resolved output using bicubic 

interpolation, which is comparatively simpler and reduces the method's overall 

computational cost. 

 

    
Figure 13: Representation patch images of the trained HR (left) and LR (right) 
dictionary 

 

For the texture, ‘ tX ’ is first up scaled by 2 using bicubic interpolation after MCA 

decomposition. Upsampling before feature extraction is preferable because it is 

easier to create a correspondence between HR and up sampled LR image 

patches [14]. 

Now, an up sampled LR image is passed through 1D feature extraction filters of 

first and second orders, respectively to extract the high frequency features, as 

follows:  

                                                               [ 1, 0, 1]f = −                                                            (20) 

                                                           [ 2, 1, 0, 1, 2]s = − −                                                       (21) 

Linear convolution on tX  with the four filters f , Tf , s and Ts  produces four 

filtered outputs; each of size equal to the size of tX . Next, feature patches with 

single-pixel overlapping are extracted from each of the above outputs. To create 

a single feature vector tx , four feature patches corresponding to each pixel 

position of the filtered images are concatenated. As a result, each feature vector 

will be four times the size of the LR patch vector after upsampling. Finally, for 

sparse representation, the feature vector representing high-frequency information 

will be used. 
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The pre-trained over-complete dictionary is then used to represent a sparse 

representation problem, which can be written as follows: 

2

2 1
ˆ arg min , (22)C t = − +

α
α D α x α  

 

  
Figure 14: Proposed SR image reconstruction scheme 

 

  By multiplying with the HR dictionary hD , the solution to (22) ̂  will be used to   

produce the corresponding HR patch vector tx : 

                                                             

ˆ , (23)x D α=h

t h

 

        Finally, to create an intermediate reconstructed image 0X , reconstructed HR 

patches tx  are positioned onto the target HR image map. Since, 0X  does not 

satisfy the imaging model perfectly due to noise or other reconstruction errors,, the 

target HR image for the texture part sp

tX  is obtained by applying the global image 

constraint-based regularization as follows: 

                                  
2 2

02 2
arg min , (24)

X

X X X X X= − + −
sp
t

sp sp sp

t t t tSH c  

where c is the regularization parameter. The target super-resolved image for an MS 

band srX  is obtained by combining the solution of (24) with the super-resolved 

structural part obtained by MCA, as shown in Fig. 14. The target HR MS image can 

be created by combining individual super-resolved bands obtained as mentioned 
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above. 

5.2.4 Parallel implementation of proposed algorithm  

Computation is quite intensive in the K-SVD training algorithm, especially when 

the dimension of the dictionary increases, or the number of training image 

become large. In a sequential manner, it takes many hours to train the coupled 

dictionary using K-SVD. To reduce the computation time, implementation of the 

KSVD algorithm in a highly parallel environment is very much needed. Multicore 

parallel computing is one of the best choices for parallelizing the K-SVD 

algorithm. A parallel K-SVD based dictionary learning algorithm can be 

implemented based on the fork-join model of parallelism which utilizes loop level 

parallelism directives and library function from of OpenMP toolbox. In the 

OpenMP based multicore K-SVD algorithm, “for” loop operations are divided into 

multiple threads and execute each and all consequently. Thus, the computation 

time is reduced significantly. 

 

5.3 CUDA-based GP-GPU implementation of MSISR based on 
adaptive dictionary learning and sparse representations  

5.3.1  Parallel Adaptive dictionary learning for MS image SR in GPGPU: 
 

In the sequential implementation, the two dictionaries were trained globally from a 

large database of MS images. Sparse representation-based SR method using 

global dictionary very much depends upon the HR image in the training database. 

Global dictionary might not be able to represent all the image patches accurately. 

More external images can be employed to learn the database, but the 

correctness of information yield by the training database for any LR input image 

cannot be guaranteed. The reconstructed HR may seem reasonable, but the 

information acquired from the training database may be irrelevant because the 

image patches of global dictionary are not currently available. To overcome the 

aforementioned limitations of global dictionary, adaptive dictionary has been 

broadly used to solve SR problem. In the adaptive dictionary, only the input LR 

image is used instead of external database, for dictionary training. It is assumed 

that many similar image patches may exist in the same LR image, both for the 

same and across different scales. Therefore, to make the dictionary learning 

method more effective and accurate for remote sensing applications, adaptive 
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dictionary technique is used where the LR/HR dictionaries have been learned and 

updated directly from all the overlapping patches of the given LR MS image. 

Once the dictionaries are trained, the SR MS image is reconstructed from its LR 

MS image by solving the sparse coding problem. 

 

               Figure 15: Block Diagram of proposed super-resolution method 

The proposed adaptive dictionary learning-based MS image super-resolution 

method is shown in Fig. 15. A coupled overcomplete dictionary Dc is trained from 

the input test image itself.  The adaptive dictionary learning is performed through 

the following steps- 

• Feature Extraction Stage:  

The original LR MS input image is blurred and down-sampled by zooming 

factor and then by using bicubic interpolation, the blurred and down-sampled 

LR image is resized again to its original size. Next, the feature extraction step 

is being applied on the degraded LR image to extract the high frequency 

components to improve the prediction accuracy. Four 1-D high pass filters 

from Eqs. 20 and 21 are used for feature extractions. 

• K-SVD dictionary training: 

LR and HR dictionaries are jointly learned by the coupled K-SVD [24] using 

the LR feature patches obtained from the feature extraction step and HR 

patches directly extracted from the original input image. The K-SVD dictionary 

learning has two iterative steps: firstly, a sparse coding of the signal is 

computed using the OMP by fixing the dictionary. Secondly, atom wise 

dictionary updating is done iteratively to simplify the updating step.  
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• Parallel Implementation:  

K-SVD is a highly iterative process, its computation is very time consuming. 

Another time-expensive iterative process in K-SVD method is sparse coding 

computation using OMP. As OMP consists of many matrix/vector operations, 

such as matrix inverse and matrix-vector multiplication, it is very much suitable 

for parallel implementation on GPU platform. The computationally intensive 

operations of K-SVD are implemented on GPU environment by designing 

different kernels to reduce computational time.  

The CUDA-OMP differs from the sequential implementation only by using 

interleaved arrays. The interleaved access pattern speeds up memory reads 

and writes in a massive-parallel environment by accessing sequential 

elements in threads or workitems at the same time. From the CUDA 

perspective, that means working with strided vectors, e.g., i  is implemented 

as alpha[j+i*m] where m is the number of active threads and j = blockIdx.x* 

blockDim.x + threadIdx.x is the index of the current CUDA workitem.  Each 

threads solves a separate OMP problem. The CUDA-GPU based OMP is 

summarised in Algorithm 1  

The KSVD algorithm manipulates large training dataset; therefore, it is 

implemented on the host computer, while calling CUDA subroutines. In the 

algorithm below, the steps that are run on the device, are marked as “on 

device”, and the data that are stored on the device are marked with the 

“device” superscript. Some on-device routines are borrowed from the standard 

cuBLAS library in which case we denote the operation as “using cuBLAS”. 

The NVIDIA cuBLAS is a dedicated GPU implemented library for the standard 

basic linear algebra subroutines (BLAS).  This library gives the user to access 

the computational resource of GPU. Algorithm 2 summarize the KSVD 

algorithm implemented in CUDA-GPU. The dictionary clearing subroutine is 

shown in Algorithm 3. In the algorithms discussed below, the notation 

2

2
( )TA Diag A A=  means the column-wise 2l -norm, and 2

2 ix x=  for a 

vector x. The ( )x  is defined as following: 
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                                            ( )
0 , 0

1 , 0

if x
x

if x

=
 = 


 

Algorithm 1: OMP algorithm implemented in CUDA-GPU 
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Algorithm 2: CUDA-GPU based KSVD algorithm 
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Algorithm 3: The dictionary cleansing subroutine 

 

 

6 GPGPU parallel reconstruction of super-resolution MS image 

In the SR reconstruction, input MS LR image is divided into multiple feature patches 

by overlapping of one pixel and each patch is processed independently. The 

processing of image patches for a whole image is computationally very heavy and 

independent. As the image size increases, the processing time of image patches is 

also increased. In such case, the parallel data structure characteristics of image 

patches is the key feature to exploit in the GPU platform for accelerating the 

computation time. Here, for harnessing the GPU acceleration, a parallel 

programming platform named CUDA, released by NVIDIA is adopted to achieve a 

fast SR reconstruction method for real-time applications. The proposed parallel SR 

image reconstruction method is schematically shown in Fig. 16. 
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Figure 16: Schematic of proposed GPGPU SR image reconstruction method  

 

Since, SR operation is applied on every image patch independently, so for each LR 

MS patch a sparse coefficient vector is calculated using the coupled dictionaries Dh 

and Dl learned using K-SVD technique as described in the previous dictionary 

learning section. Then a HR version of that patch is obtained by multiplying the 

sparse coefficients vector with HR dictionary Dh. 

 For CUDA-GPU based SR reconstruction, a kernel function is defined on the global 

memory to perform the SR operation on every patch in parallel. Since SR works 

patch-wise that offers fine-grained thread parallelism, each thread is qualified for 

processing a patch. Input MS image patches and the HR/LR dictionaries (Dh and Dl) 

are transferred from host (CPU) memory to global memory (GPU). Next, sparse 

coefficients for each LR patch are solved by LASSO that runs on an individual 

thread. Since, each HR and LR MS patches share the same sparse representation 

coefficients in the joint coupled dictionary pair, the desired HR multispectral image 

patches can be obtained by multiplying high resolution dictionary with sparse 

representation coefficient.  Once all the HR patches are reconstructed, all these 

patches are transferred from global memory (GPU) to host memory (CPU). Finally, 

the desired HR image is obtained by tiling of all the HR image patches in the CPU. 

By applying back projection as given in Eq. 8, the final high resolution MS image is 

obtained. 
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6. Results 

E. Database preparation 
F. QuickBird Multispectral (MS) Data collected from GLCF: 

  Multispectral satellite image data collected by QuickBird are taken via FTP from 

the Global Land Cover Facility (GLCF*). The images of various land cover types 

have been captured over the areas of Indonesia, Sri Lanka, Bangladesh and 

India during the period from August 2 to December 3, 2002. The QuickBird 

satellite data has a high-resolution panchromatic (PAN) image with spatial 

resolution of 0.7 meters and low resolution multispectral (MS) images in four 

bands (i.e., red, green, blue, and near infrared) with a spatial resolution of 2.8 

meters. 

 *http://glcf.umiacs.umd.edu/  (Last accessed on 20 March 2018) 

a.   MS Data Purchased from NRSC Data Center, ISRO: 

 MS datasets containing Resourcesat 2A LISS-III and LISS-IV images have   

been purchased from NRSC data center (https://uops.nrsc.gov.in/) . The satellite 

Resourcesat 2 LISS-III provides four MS bands- three in visible near infrared 

(VNIR) and one in Short Wave Infrared (SWIR) with 23.5meters resolution. LISS-

http://glcf.umiacs.umd.edu/
https://uops.nrsc.gov.in/)
https://uops.nrsc.gov.in/)
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IV sensor also provides same four bands with a spatial resolution of 5.8 meters. 

These images are downloaded via FTP. These Land cover type images captured 

during January 6, 2013, to April 10, 2018, over many places in India are available 

in the datasets. 

b.  Freely available MS Data collected from Bhuvan portal: 

    This dataset consisting of Resourcesat 2 (LISS-III) images have been freely 

downloaded from Bhuvan portal (http://bhuvan.nrsc.gov.in/data/download/index.php). 

These MS images were collected from various parts of India during the period 

November 24, 2009, to February 02, 2016. 

G. Experimental Set-up 

Experiments were performed on a server equipped with the Intel(R) Xeon(R) E5-

2620V4 processor running at 2.1 GHz, and having 20 M cache, and 128 GB RAM. 

Further, it embeds an NVIDIA tesla P100 GPU card with pascal architecture and 

comprises of 3584 cores. 

Table 1: Hardware specification of GPU 

GPU Architecture  NVIDIA Pascal NVIDIA CUDA® 

NVIDIA CUDA® Cores 3584 

Double-Precision Performance  4.7 TeraFLOPS 

GPU Memory 16GB CoWoS HBM2 at 732 
GB/s or 12GB CoWoS HBM2 at 
549 GB/s 

System Interface PCIe Gen3 

Max Power Consumption 250 W 

 

H. Evaluations Parameters: 

For quantitative and qualitative measurements, PSNR, MSSIM, SAM, ERGAS, Q-

Index and sCC are used as objective evaluation criteria to measure the 

reconstruction quality of an image. 

I. Peak signal-to-noise ratio (PSNR): PSNR can be calculated by using the 

following formula: 

                                       

2

10

255
( ) 10logPSNR dB

MSE
=  

                       where,  ( ) ( )( )
21 1

1 1

1
, ,

w hM M

i jw h

MSE r i j t i j
M M

− −

= =

= −


                             

           where r is the ground truth HR image and t is the reconstructed HR image. 

 

http://bhuvan.nrsc.gov.in/data/download/index.php
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J.  Structural similarity index measurement (MSSIM):  SSIM is described by 

                       
( )( )2 2 2 2

4 r t rt

r t r t

SSIM
 

   
=

+ +
 

Where r , t and r , t  represent the means and variances of ground truth 

and recovered HR images, respectively. rt  denotes the covariance of HR 

ground truth and recovered images. 

Besides PSNR and MSSIM, we evaluated five other objective parameters for 

validation of the proposed MS image SR. 

K. Spectral angle mapper (SAM): It is commonly used for spectral analysis of MS 

images and it calculates the average angle between the pixels of input (Y) and 

output image (X) using each band as a coordinate axis. 

 11
( , ) 0,

N
i i

i i i

Y X
SAM Y X cos

N Y X

−
 

=   
 

 p

 

          where N is the total number of pixels in the image. The ideal value for SAM is 0. 

L. ERGAS: For quality evaluation, it takes into account scaling factor and root mean 

square error (RMSE) values and is expressed as follows: 

 
2

100 1 ( , )
( , ) 0,

j jK

j
j

RMSE Y X
ERGAS Y X

S K Y

 
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

 

        where S is the SR scaling factor ERGAS values of 0 indicate the best quality, 

while higher values indicate distortions in the reconstructed output. 

M. Universal image quality index (Q-index): It gathers three properties in the 

image evaluation, which are correlation, luminance and contrast, respectively. In 

case of MS image it is computed as the average value of spectral band. Its value 

also lies in the range [-1,1]. It is defined by: 

( ) ( ) ( ) ( )
 2 2 2 2
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N. Spatial Correlation Coefficient (sCC): It measures linear relationship between 

edges of reference image to that of the reconstructed image. It is expressed as 
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XY

X Y

sCC


 
=

 

where  xy  denotes covariance between the ground truth (X) and the super-

resolved image (Y). Similarly, X  and Y  represent standard deviations of X and 

Y, respectively. Its value lies in the range [-1,1]. 

O. Speed-up calculation: 

For quantitative measurements, the speed-up St is calculated to compare the 

time taken by CPU (sequential) and GPU to reconstruct an image: 

s
t

p

t
S

t
=

D. Results of CPU implementation of MSISR models based on 

dictionary learning and sparse representations 

D.1 Results of MSISR based on sparse representations and 

overcomplete dictionaries 

 D.1.1 Performance Evaluations  

Results of visual study and objective performance criteria are explained below. 

Output images are analyzed in terms of visual study as well as PSNR, MSSIM, 

SAM, Q-index and ERGAS for the multispectral image SR. We also analyzed the 

time complexity of both the experiments. 

P. Visual Study: 

a. SISR from RGB MS images  

Super-resolution outputs for three different inputs Test1, Test2 and Test3 

having resolutions of 128128, 256  256 and 512512 are shown in Fig.17 

for two times zooming. A small portion of the zoomed image is also shown 

superimposed on the output image in the left-hand side to highlight the visual 

quality of reconstruction1. The dataset for this work is collected from [11].  

b. SISR from four band MS images 

The multispectral image SR based on sparse representation is tested on two 

MS low resolution images:  a 256256 MS land cover image collected from 

the area of Indonesia and Ujong and a 128128 size MS image from 
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Sundarban, India.  Visual quality of the output images of bicubic interpolation 

and proposed work are displayed in Figs. 18 and 19 below.   

 
     B. Objective Evaluations: 

c. For SISR of RGB images 

PSNR and MSSIM are shown for the reconstructed images in Table 2. The 

proposed method is able to give better results in terms of PSNR and MSSIM 

for all the test images compared to bicubic interpolation1.          

       
 

Figure 17:  Results for a zooming factor of 2. First row left to right: Test1 and results 

of bicubic and the proposed method, respectively. Second row left to right: Test2 and 

results of bicubic and the proposed method. Third row left to right: Test3 and results 
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of bicubic and the proposed method, respectively. 

 
 

Figure 18: Results for a zooming factor of 2 of QuickBird MS land cover image of the 

area Indonesia and Ujong. First row left to right: ground image and input LR MS 

image of half size. Second row left to right: Results of bicubic and the proposed 

method. 

 

Figure 19: Results for a zooming factor of 2 of QuickBird MS land cover image of the 

area Sunderland, India. First row left to right: ground image and input LR MS image of 
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half size. Second row left to right: Results of bicubic and the proposed method1. 

       Table 2: PSNR and MSSIM values of test images for different upscale factor 

 

 
 
 
 
 
  

d.      For SISR of MS images: 

Here, besides PSNR and MSSIM, we evaluated three other objective 

parameters, i.e. Q-index, SAM, ERGAS parameters for validation of MSSISR. 

 

Table 3: Performance comparison  in terms of objective parameters 

 

 

 

Indexes 

Experiment 1 

Input= 256x256; 

Output=512x512 

Experiment 2 

Input= 128x128; 

Output=256x256 

 B
ic

u
b

ic
 

 M
S

IS
R

 

 S
P

A
R

S
F

I 

 B
ic

u
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ic
 

 M
S

IS
R

 

 S
P
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R

S
F

I 

P
S

N
R

 

R 30.01 30.92 30.83 25.60 26.67 26.66 

G 25.83 26.77 26.77 26.62 27.54 27.54 

B 34.01 34.72 34.65 33.44 34.14 34.15 

N 10.07 10.99 10.99 18.82 19.66 19.65 

RGB 29.40 30.42 30.39 28.44 29.38 29.32 

S
S

IM
 

R 0.973 0.994 0.994 0.807 0.853 0.853 

G 0.968 0.993 0.993 0.796 0.849 0.849 

B 0.971 0.992 0.992 0.840 0.872 0.872 

N 0.961 0.993 0.993 0.798 0.850 0.849 

RGB 0.971 0.993 0.994 0.810 0.859 0.859 

Q-index 0.823 0.845 0.885 0.960 0.988 0.992 

SAM 1.333 1.254 1.250 0.779 0.767 0.767 

ERGAS 1.543 1.390 1.400 1.23 1.11 1.124 

e. Related Publication: 

1H. U. Mullah and B. Deka, “A Fast Satellite Image Super-Resolution Technique 

Using Multicore Processing”, Advances in Intelligent Systems and Computing, 
Springer,  vol. 734,  2018. 

 

 
Input PSNR (in dB) MSSIM 

ZOOM=2 ZOOM=4 ZOOM=2 ZOOM=4 

Bicubic Proposed Bicubic Proposed Bicubic Proposed Bicubic Proposed 

Test-1 29.30 30.16 26.57 26.83 0.756 0.805 0.740 0.778 

Test-2 29.31 30.33 27.03 27.36 0.956 0.968 0.945 0.953 

Test-3 30.40 31.76 28.69  29.21 0.969 0.979 0.946 0.955 
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D.2 Results of MSISR based on MCA and sparse representations  

Experiments are performed to obtain the SR of multispectral images for different zooming 

value with a trained coupled dictionary of size 256. Quantitative evaluations are done for 

comparisons of results. Moreover, the spectral properties of the reconstructed images are 

also examined.  

D.2.1 Datasets : 

Three multispectral image databases are considered for experiments which are QuickBird, 

LISS-III and LISS-IV respectively, which band information is as mentioned in Table I. Results 

are shown for three test images shown in Fig. 20 below2. 

Table 4: Details of MS image datasets 

 

 

Figure 20: Test images: from left to right: QuickBird, LISS-IV, LISS-III 

D.2.2 Simulation Results: 

    A. Super-resolution of QuickBird MS image: 

       QuickBird takes high-resolution MS images, which are extremely useful for 

assessing land cover. This experiment's dataset is multispectral as seen in Table 4. 
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It has three visible bands, blue, green, and red, as well as one near-infrared (NIR) 

band with a resolution of 2.8 m. The training dataset contains 25 distinctive MS 

images from areas such as Chilika Lake, the Sundarbans, Ujong Kulon, Yala, and 

others. Fig. 20 shows a few examples of images from this dataset. LR and HR 

patches of size 22 and 88, respectively, are extracted from the dataset and train 

HR and LR dictionaries of size 64256. The ground truth for reconstruction is a 

256×256 MS image with a resolution of 2.8 m (capturing a scene over the India-

Sundarban region passed by the satellite on November 2, 2002). We use the given 

LR-MS image as the ground-truth since we do not have an HR-MS image. The LR 

MS test image is obtained by applying a Gaussian low-pass filter (LPF) of size 5 

and standard deviation = 0.5, followed by a factor of 4 down-sampling, as seen in 

Fig. 21. 

  B. Super-resolution of LISS-IV image: 

This experiment's dataset is multi-spectral, as seen in Table 4. LISS-IV MS data has 

a resolution of 5.8 m and consists of two visible bands (B2 and B4) and one NIR 

band (B3). The coverage swath is 70 km, and bands are quantized using 10 bits. 

The training dataset consists of 30 images of various sizes: 256256, 512  512, 

and 10241024. Region of Interest (RoI) can be chosen so that it includes 

homogeneous regions in each band when selecting training images. This means 

that each of the training images has high feature content and therefore facilitates 

improved dictionary learning. To learn HR and LR dictionaries, 50,000 sample 

patches are chosen from the training dataset for this experiment. Fig. 20 depicts a 

visual representation of the above-mentioned dataset's trained HR and LR 

dictionaries. We consider extracting patches of size 5×5 from both HR and upscaled 

LR MS images, which results in LR and HR dictionaries of sizes 25256 and 

100256, respectively.  As seen in Fig. 21, a 512512 size ground-truth image is 

obtained from a 5.8 m resolution LISS-IV earth observation image passing over an 

area of India on March 18, 2017. We generate test LR MS images for reconstruction 

by blurring and downsampling each band of the input LISS-IV MS image. The 

results of SR reconstruction of test LR MS images are compared to the ground-

truth. 
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Figure 21: Visual outputs of different methods and the error images with ground truth:  

from top to bottom: first and second row are LISS-IV results for 2 times zooming, third 

and fourth row are LISS-III results for 3 times zooming, fifth and sixth rows are 

QuickBird results for 4 times zooming. Again, from left to right: Bicubic method, 

SparseFI, Yang et al. method, Moustafa et al method and the proposed method. 
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Figure 22: Representation patch images of the trained HR (left) and LR (right) 
dictionary 

Table 5: Evaluation of parameters for the three test images 
 

Image Method 
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E
 

 

 

 

QuickBird 

 

Bi-cubic  25.32 0.8015 7.663 4.438 0.7766 0.9690 17.92 

SparseFI 26.46 0.8402 6.714 4.296 0.8274 0.9761 13.10 

Yang et al. 26.47 0.8499 6.762 4.280 0.8305 0.9767 14.0 

Moustafa et al.  26.52 0.8496 6.694 4.284 0.8298 0.9764 13.56 

Chen et al.  26.39 0.8290 7.149 4.328 0.8080 0.9740 13.7 

Lucas et al.  26.18 0.8070 7.477 4.423 0.7830 0.9700 13.41 

Proposed 26.60 0.8505 6.611 4.275 0.8312 0.9772 12.96 

 
 
 
 
 

LISS-IV 
 

 

Bi-cubic  30.11 0.9694 5.492 3.316 0.8454 0.9818 15.79 

SparseFI 32.54 0.9968 4.205 2.726 0.9135 0.9892 14.11 

Yang et al. 31.37 0.9835 4.748 3.310 0.8783 0.9862 14.80 

Moustafa et al.  32.48 0.9937 4.233 2.769 0.9073 0.9892 14.25 

Chen et al.  32.35 0.9910 4.649 2.925 0.8900 0.9870 12.90 

Lucas et al.  32.45 0.9920 4.827 3.027 0.8870 0.9860 12.44 

Proposed 32.76 0.9974 4.106 2.663 0.9181 0.9897 12.91 
 
 
 
 
 

LISS-III 

Bi-cubic  25.95 0.8108 7.724 4.023 0.7915 0.9454 18.06 

SparseFI 26.54 0.8414 7.082 3.917 0.8273 0.9545 15.23 

Yang et al. 26.88 0.8607 6.787 3.859 0.8402 0.9570 14.96 

Moustafa et al.  27.10 0.8636 6.764 3.614 0.8491 0.9586 13.56 

Chen et al.  27.07 0.8510 7.014 3.683 0.8360 0.9550 13.89 

Lucas et al.  26.96 0.8500 7.091 3.757 0.8350 0.9540 12.01 

Proposed 27.24 0.8719 6.663 3.567 0.8601 0.9590 12.41 

 Ideal value High 1 0 0 High High Low 

 
C. Super-resolution of LISS-III MS image: 

The dataset of this experiment is multi-spectral as referred in Table 5. LISS-III 

images have a medium resolution (i.e., 23.5 m) and four spectral bands: three 

visible (B2, B3, and B4) and one near-infrared (NIR) (B5). The swath coverage is 
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140 km, and each band is quantized with 10 bits. We create a training dataset of 25 

MS images, which are chosen in the same manner as described for LISS-IV.  

These images are regarded as HR data, from which LR images for learning HR and 

LR dictionaries for our experiments are produced. We considered extracting HR-

patches of size 9×9  with 3 pixels overlap and LR-patches of size 33 with 1 pixel 

overlap to obtain HR and LR dictionaries of sizes 81256 and 144256, 

respectively.  For reconstruction, an image of size 510510 with a resolution of 23.5 

m is obtained from an original LISS-III image containing a scene over the area of 

Giri Forest, India, and with a pass date of 8 January 2017. 

  D. Super-resolution of panchromatic image: 

This experiment's dataset is Panchromatic, as seen in Table 5. Consider a monochrome 

CARTOSAT-2 PAN image with a swath coverage of 9.6 km and a spatial resolution of about 

0.65 m. We choose 20 HR-PAN ROI images with homogeneous information for learning the 

dictionary, as we do in MS image SR. 

LR versions of each of these images are created using the same method as the LR-MS test 

data. PAN image SR essentially applies the SISR algorithm to each band of the MS image 

during SR. A ground-truth image of size 512512 is obtained from the CARTOSAT-2B 

satellite of ISRO passing over the area, Mumbai, India on 10 December 2015. Blurring and 

downsampling are used to generate the LR test image of scale 256256. Fig. 21 depicts the 

SR findings. On an average, the proposed method for PAN image SR improves PSNR by 

around 1.4 dB over bi-cubic performance, while Yang's method and Chen's method 

improve PSNR by 0.1–2 dB. 

            Table 6: Qualitative measures for CARTOSAT-2 PAN 1 image SR 

Image Methods  PSNR  MSSIM  UIQI  NIQE 

 

 

CARTOSAT-

2 PAN 

Bi-cubic  40.13  0.9921  0.8586  24.29 

Yang et al.  41.43  0.9965  0.8825  17.39 

Chen et al.  41.32  0.9950  0.8720  18.16 

Lucas et al.  40.97  0.9950  0.8730  20.94 

Proposed  41.52  0.9966  0.8862  17.07 

f.   Related Publication: 

2H. U. Mullah, B. Deka, and AVV Prasad, “Fast Multispectral Image Super-
resolution via Sparse Representation”, IET Image Processing, 2020  
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D.3 Results of MSISR based on adaptive dictionary learning and 

sparse representations 

D.3.1 Performance evaluation 

Simulations of the proposed method are conducted on the generated test data sets 

of LISS-IV imagery. LISS-IV MS images, as we know, are made up of three spectral 

bands. In this work, rather than processing a false colour RGB image by combining 

the spectral bands, an individual band image of the test MS image is processed. The 

reason for not processing a false RGB image is that it loses individual band 

characteristics.  Also, if the dictionary is learnt from one band image, it will not 

properly work for processing of any other bands. This is because the range of 

numerical values of pixels in each band is very different. Although the content in a 

MS image remains same but band wise, they highlight different objects. The coupled 

dictionary pair is learned from 10000 training patch-pairs from a single LR MS image 

band-wise. 

Table 7: Performance Evaluation of Test Image size of 512 using different methods for 
upscaling factor 2 

Indexs 
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PSNR 
(dB) 

Band 1 38.36 40.23 40.02 40.02 41.78 43.15 

Band 2 34.64 37.02 35.92 36.03 37.98 39.18 

Band 3 31.72 33.47 33.13 33.34 35.62 34.88 

Average 34.90 36.90 36.36 36.46 38.46 39.07 

SSIM 

Band 1 0.949 0.966 0.961 0.959 0.967 0.977 

Band 2 0.922 0.952 0.940 0.938 0.953 0.969 

Band 3 0.900 0.938 0.919 0.920 0.947 0.944 

Average 0.923 0.952 0.940 0.939 0.956 0.963 

ERGAS 

Band 1 5.91 4.76 4.86 4.88 3.98 3.40 

Band 2 12.00 9.12 10.36 10.21 8.16 7.11 

Band 3 5.54 4.54 4.72 4.60 3.54 3.85 

Average 7.82 6.14 6.65 6.56 5.22 4.79 

SAM 

Band 1 0.029 0.023 0.024 0.024 0.019 0.016 

Band 2 0.058 0.044 0.050 0.049 0.040 0.034 

Band 3 0.027 0.022 0.023 0.022 0.018 0.019 

Average 0.038 0.030 0.032 0.032 0.026 0.023 

UIQI 

Band 1 0.777 0.834 0.829 0.808 0.842 0.894 

Band 2 0.816 0.830 0.859 0.846 0.878 0.925 

Band 3 0.769 0.793 0.784 0.798 0.832 0.789 

Average 0.788 0.819 0.824 0.817 0.851 0.869 

sCC 

Band 1 0.794 0.835 0.853 0.842 0.835 0.882 

Band 2 0.843 0.890 0.885 0.851 0.876 0.919 

Band 3 0.851 0.894 0.877 0.883 0.898 0.863 

Average 0.830 0.873 0.871 0.859 0.870 0.888 
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For validation of the proposed algorithm, quantitative evaluation of reconstructed 

images for upscaling factor 2 is performed as shown in Table 7. SR results are 

compared with the Bicubic interpolation and four state-of-the-art learning-based SR 

methods: Yang’s sparse coding super-resolution (ScSR [14]) methods, anchored 

neighborhood regression method (ANR) [7], clustering and collaborative representation 

(CCR) [38] and joint regularization based SR method (JRSR) [39]. Here, for 

quantitative analysis, the peak signal-to-noise ratio (PSNR) and structural similarity 

(SSIM) measures, ERGAS, SAM, Q-index and sCC are employed.  

Table 8: Performance Evaluation of Test Image size of 512 using different methods for 
upscaling factor 4 

 

Indexs 
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PSNR(dB) 

Band 1 32.10 32.65 33.18 33.30 33.66 33.48 

Band 2 27.56 28.23 28.47 28.60 28.91 28.78 

Band 3 27.86 28.48 29.02 29.37 29.56 29.37 

Average 29.17 29.79 30.22 30.42 30.71 30.54 

SSIM 

Band 1 0.819 0.838 0.842 0.845 0.866 0.851 

Band 2 0.725 0.757 0.760 0.765 0.800 0.775 

Band 3 0.724 0.749 0.753 0.762 0.786 0.767 

Average 0.756 0.781 0.785 0.790 0.817 0.798 

ERGAS Band 1 10.52 9.89 9.30 9.18 8.81 9.00 

Band 2 17.59 16.27 15.84 15.59 15.04 15.28 

Band 3 11.48 10.68 10.04 9.66 9.43 9.64 

Average 13.20 12.28 11.720 11.48 11.09 11.31 

SAM 

Band 1 0.052 0.049 0.046 0.045 0.044 0.044 

Band 2 0.084 0.078 0.076 0.074 0.071 0.073 

Band 3 0.054 0.046 0.047 0.045 0.043 0.044 

Average 0.0633 0.0577 0.0563 0.0547 0.0527 0.0537 

UIQI 

Band 1 0.450 0.507 0.518 0.519 0.596 0.547 

Band 2 0.457 0.520 0.526 0.530 0.607 0.557 

Band 3 0.412 0.467 0.472 0.480 0.549 0.501 

Average 0.440 0.498 0.505 0.509 0.584 0.535 

sCC 

Band 1 0.406 0.427 0.467 0.476 0.513 0.481 

Band 2 0.426 0.450 0.480 0.492 0.529 0.499 

Band 3 0.401 0.429 0.456 0.480 0.503 0.478 

Average 0.411 0.435 0.468 0.483 0.515 0.486 

The visual quality of the reconstructed images using various methods is shown in Fig. 

23 for 2 times zoom factor. For better visual perception, zoomed in area is highlighted 

in the original image; shown for different methods to distinguish the visual difference 

accurately. 
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Figure 23: Visual outputs of different SR results on test image 512×512 by using 
different methods for upscaling factor 2. (Zoom in for better view) 
 
 
 
 



                                                                                                                                                                 

49 ISRO RESPOND PROJECT                                                                

 

The qualitative comparisons of the HR reconstructions MS images of size 512512 

using various algorithms are shown in Table 8 with a zoom factor of 4. Also, the 

reconstructed images (zoom in) are visually compared by using different methods in 

Fig. 24 for upscale factor 4 

 

 
 

Figure 24: Visual outputs of different SR results on test image 512×512 by using 

different methods for upscaling factor 4. (Zoom in for better view) 

Q. Results of Parallel implementations of MSISR models based on 

dictionary learning and sparse representations 
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  E.1 Results of Multicore Parallel Processing Implementation of 

MSISR based on sparse representations and overcomplete 

dictionaries1     

 The execution time is computed for reconstruction of the test images in both 

sequential and parallel approaches. Fig. 25 shows that the Yang's method [1] 

requires 91 seconds using the sequential approach for reconstructing a 256256 

image from a 128128 image of Test1. On the contrary, with the application of 

multicore parallel processing it is reduced to 8.4 secs. when 24 cores are used. Thus, 

the overall speed up that is achieved using the proposed method is = 91/8.4 = 10.83 

 

 

                

Figure 25: Plot of computation time versus number of cores used in multicore 

computing system 

a. Related Publication: 

1H. U. Mullah and B. Deka, “A Fast Satellite Image Super-Resolution Technique 

Using Multicore Processing”, Advances in Intelligent Systems and Computing, 
Springer,  vol. 734,  2018 

 

 

 

 

E.2 Results of Multicore Implementation of MSISR based on MCA and 
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Sparse Representation 

The proposed method as discussed in section 5.1.2, when implemented using 

multicore parallel computing is able to provide an speed-up of about 28 times in 

dictionary training, as shown in Fig. 26 (above), while it reduces the reconstruction 

time by about 12 times as shown in the Fig. 26 (below) 2. 

 
Figure 26: Speed-up comparisons: dictionary training (above) and SR reconstruction 

(below) 

b. Related Publication: 

2H. U. Mullah, B. Deka, and AVV Prasad, “Fast Multispectral Image Super-
resolution via Sparse Representation”, IET Image Processing, 2020  

 

E.3 Results of CUDA-based GPGPU Implementation of MSISR based on 
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adaptive dictionary learning and sparse representations 

The experiment is carried out to analyze the scalability of our implementation in terms 

of dictionary size and input image size. Table 9 shows the execution time taken for 

both sequential CPU and GPU implementation of dictionary learning for different 

dictionary sizes. Dictionaries of different size are trained using internal dataset i.e., 

LR image itself size of 512512. The Dh and Dl are trained using fixed sample 

patches around 100000. As the sample patches are kept in fixed numbers, it takes 

same execution time for different upscaling factors on CPU. 

Table 9: CPU vs GPU speed-up for different dictionary size 

Dictionary 

Size 

CPU 

(secs) 

GPU 

(secs) 

Speed-up 

256 105 10 10.5 

512 193 17 11.3 

1024 363 27 13.44 

 
As the dictionary size increases, the speed up of GPU implementation increases 

from 4 to 5 times. Fig. 27 shows the running time comparison of CPU and GPU 

implementation of dictionary learning for various dictionary sizes. 

 

Figure 27: Execution time of CPU and GPU implementations of different 

                                             dictionary sizes 

In the reconstruction, the image size (number of pixels) was varied from 128128, 

256256, 512  512, and 10241024. Table 10 compares the execution time for 

sequential CPU and GPU parallel implementations for upscale factor 2. We note 

that as the image size used in the experiment increases, so does the speedup. As 

the image sizes increases, the GPU implementation's speed improved steadily 

from 11 to 36 times as compared to CPU equivalents. In Fig. 28, the 
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reconstruction time comparison between CPU and our proposed GPU SR method 

is shown for different image sizes with zooming factor 2 

Table 10: CPU vs GPU Reconstruction time comparison for zoom factor 2 

Image Size Proposed 

Method 

Average CPU 

Time 

(secs) 

(ts) 

Average 

GPU Time 

(secs) 

(tp) 

Speed

up 

(ts/tp) 
CPU GPU 

128x128 Band 1 40.33 3.77 
42.65 3.78 

 

11.28 Band 2 43.99 3.80 

Band 3 43.68 3.79 

256x256 Band 1 188.10 4.25 
188.10 4.28 29.93 Band 2 188.10 4.27 

Band 3 187.11 4.32 

512x512 Band 1 318.20 10.02 
317.04 9.36 

 

33.87 Band 2 315.59 10.02 

Band 3 317.34 8.05 

1024x1024 Band 1 856.20 24.01 
865.53 23.67 36.56 Band 2 907.20 24.01 

Band 3 834.20 23.00 

 

Table 10 shows the comparison of reconstruction time of sequential CPU and 

GPU parallel implementations for different image sizes using upscale factor 4. 

Our proposed method takes about 4-83 secs and reduces the reconstruction time 

by 60 to 186 times as compared to CPU counterparts.  

Table 11: CPU vs GPU Reconstruction time comparison for zoom factor 4 

Image Size Proposed 

Method 

Average CPU 

Time 

(secs) 

(ts) 

Average 

GPU Time 

(secs) 

(tp) 

Speed

up 

(ts/tp) 
CPU GPU 

128x128 Band 1 249.01 4.11 
250.60 4.11 

 

60.97 Band 2 252.35 4.12 

Band 3 250.44 4.11 

256x256 Band 1 1028.22 9.54 
1028.59 9.49 108.38 Band 2 1029.03 9.42 

Band 3 1028.54 9.53 

512x512 Band 1 4295.23 23.01 
4295.04 23.18 

 

186.73 Band 2 4294.02 23.42 

Band 3 4295.44 23.13 

1024x1024 Band 1 9322.17 83.02 
9322.78 83.93 111.07 Band 2 9324.17 82.55 

Band 3 9322.01 83.22 

Overall, the results show that executing our algorithm on GPU is 11 to 186 times 
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faster than performing it on CPU for different zooming factor, respectively The 

execution time comparison between CPU and our proposed GPU SR 

reconstruction method is shown in Fig. 29 for various image sizes with zooming 

factor 4. As the execution time difference between CPU and GPU is quite large, 

the running time in Fig. 29 is shown in log scale. 

 

Figure 28 : Reconstruction time of CPU and GPU implementation for different 

                                     Image sizes with zooming factor 2 

 

 

 

Figure 29: Reconstruction time of CPU and GPU implementation for different 

                                         Image sizes with zooming factor 4 

c. Related Publication: 

Trishna Barman, Bhabesh Deka, and AVV Prasad, “GPU-Accelerated Adaptive 
Dictionary Learning and Sparse Representations for Multispectral Image Super-
resolution,” IEEE 18th India Council International Conference (INDICON), 2021 
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R. Real-time Implementations and Applications 

F.1 Real-time Implementations of MSISR models  

  It is one of the major conflicts that there is no ground truth image in case of real 

satellite data. We usually synthesize a LR image from original images, then produce 

a SR image from the LR image, finally compare the original and SR images. But, in 

real case, we can only produce a HR version of the original LR MS image itself. In 

such case, we can compare the resulted image with other HR MS images acquired 

from a HR sensor. This can be done by first finding the same area images for the HR 

sensor, then allotting similar geospatial coordinates to the reconstructed images, and 

finally re-projecting the new sensor image into similar resolution to the SR 

reconstructed image. Thus, we obtain spatially and spectrally equivalent images 

which can be compared both visually as well as by comparing performance by NIQE 

measure or by any classification algorithm 

To implement the MCA based MSISR method as discussed in section 5. 2 for real-

time applications, experiments are carried out in this work to test the output of the 

proposed method when input LR images are fed directly to the proposed algorithm for 

SR reconstructions for various zooming factors, without any preprocessing, such as 

blurring and down-sampling. In addition to visual inspection, we assess the quality of 

super-resolved outputs using the no-reference assessment metric, i.e. NIQE. When 

we use the QuickBird MS image as the input LR image directly and do SR 

reconstruction on it for 2x zooming, the NIQE values for the input and output images 

are 14.86 and 11.51, respectively. Similarly, we compute the NIQE values of 

reconstructed images using LISS-IV and LISS-III sensor inputs. The input and 

reconstructed LISS-IV images have NIQE values of 21.70 and 19.37, respectively, 

while the LISS-III image has NIQE values of 24.25 and 21.49, respectively2. 

Since the spatial size of remote sensing images is significantly large, it is very 

important to process the larger remote sensing images within a real-time. Our 

efficient CUDA-GPU based SR algorithm can easily process the larger remote 

sensing images (up to 30001500 image size) within a few minutes for different 

upscaling factors. The proposed method has also the ability to enhance visual quality 

of SR results for upscaling factor 2 and 4.  To validate the effectiveness of the 

proposed method for real remote sensing images, quantitative SR results of different 

RoIs are shown for upscale factor 2 and 4 in Tables 11 and 12, respectively. 
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Execution times taken for dictionary training and reconstruction for different RoIs 

using this CUDA-GPU-based parallel SR algorithm are also shown in Table 12 and 

Table 13 for upscale factors 2 and 4. The proposed method is only compared with the 

bicubic method because other state-of-the-art methods cannot be processed for the 

larger remote sensing images due to the memory limitation imposed by their 

sequential implementations.     

Table 12:  Band wise results for two real MS images and GPU dictionary training/ 

reconstruction time with upscale factor 2 
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SSIM 0.956 0.974 

Band 3 PSNR 38.73 42.25 53.12 146 

SSIM 0.859 0.970 

Band 4 PSNR 34.68 38.17 54.02 147 

SSIM 0.895 0.952 

Table 13:  Band wise results for two real MS images and GPU dictionary training/ 
/reconstruction time with upscale factor 4 
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The visual results of an input LR image of size 20482048 and its corresponding SR 

results for upscale factor 2 is shown in Fig. 30. We can see that the visual quality of 

output SR is much improved than that of LR input image in the enlarged rectangular 

area. For upscale factor 4, the visual result of input LR image size of 20482048 is 

shown in Fig. 31. 

 

 

Figure 30: The visual results of LR and SR image of LISS-IV sensor for upscale 

factor 2; An area in the red rectangle is enlarged in the lower right corner of the 

image. 

PSNR: 42.10 dB 

Time Taken: 83 secs 
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Figure 31: The visual results of LR and SR image of LISS-IV sensor for upscale 
factor 4; An area in the red rectangle is enlarged in the lower right corner of the 
image 
 
 

PSNR: 34.68 dB 

Time Taken: 403 secs 
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 F.2 Application and Evaluations 

SR based multispectral remote sensing images play an important role in various 

applications such as various surveys, monitoring and management applications. To 

evaluate the MSISR image, spectral property evaluation and classification are being 

applied to the proposed method as post-processing steps. 

     F.2.1 Spectral properties evaluation: Spectral Signature 

Spectral signature plots the spectral reflectance of objects as a function of 

wavelength. A ROI of homogeneous regions corresponding to identical location in 

each band is selected. Now, average reflectance of pixels in the ROI 

corresponding to a band are then plotted against the band number. Spectral 

profile plots of the QuickBird test MS image and HR MS image produced from it 

are shown in Fig. 32, where it can be observed that spectral orientations of 

ground-truth and test images are not disturbed after SR reconstruction2. 

 

Figure 32: Spectral profile of QuickBird image 

 

S. End-members identifications: 

Spectral unmixing is the decomposition of a mixed pixel's spectral signature into a 

group of endmembers and their corresponding abundance. A linear mixture model 

considers a mixed image; each pixel is a linear mixture of endmembers with 

positive fractional abundances that always add up to one. The effects of spectral 

unmixing are highly dependent on the input endmembers; modifying the 

endmembers affects the results. There are various methods for doing linear 
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spectral unmixing, such as maximum likelihood-based unmixing, spectral angle 

mapper, etc. In this work, we compare the effects of SR in end-member 

identifications using ENVI software to perform spectral unmixing of LR and SR 

MS images using the maximum likelihood method2. 

In the example shown in Fig. 33, three different types of end members are 

selected from the given LISS-IV MS image that includes water body, vegetation, 

and barren soil.  Here, the ROIs are selected for three end-member types, 

namely, “water body” consisting of total 457 numbers of pixels, “vegetation” 

consisting of 722 pixels and “barren soil” consisting of 606 pixels, respectively. 

The unmixed end-member profile distributions are displayed for the ground truth 

MS image, LR test image and SR MS image. It can be observed that, the SR 

reconstructed image by proposed algorithm is better able to identify a end-

member type of the true MS image compared to the LR test image. 

       
 

   
 

Figure 33: End-members comparisons 

a. Related Publication: 

2H. U. Mullah, B. Deka, and AVV Prasad, “Fast Multispectral Image Super-
resolution via Sparse Representation”, IET Image Processing, 2020  
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    F.2.2 Classification on SR images 

As a post processing step, classification is performed with the proposed method 

and the-state-of-the-art methods to separate various regions present in the MS 

image. Envi classic 5.1 is used for classification and analysing the classified 

results. The unsupervised classification has been performed using K-means 

method on the test image for different methods. Without training classes, 

unsupervised classification can cluster pixels from the test images. Five classes 

are defined:  vegetation, barren soil, water, road, and building. It is observed that 

the proposed method efficiently separates the classes that are quite similar to that 

of original ground truth image. But, in LR image and other SR methods, some of 

the classes are not clearly identified properly and misclassify some regions. 

Results of unsupervised classification on test images for different methods are 

shown in Fig. 34.  The percentage of classification accuracy on each class of the 

test image for different methods is given in Table 14. The classification accuracies 

on each class of the proposed method are closed to that of the ground truth. But 

class wise accuracy rates of the LR, ScSR, ANR and CCR methods are diverse 

from the original image. Since the image quality of the proposed method is 

comparatively higher than other methods, the difference in percentage of 

accuracy between the proposed method and the original ground truth image is 

low, when compared to other methods. Therefore, it can be concluded that the 

reconstruction accuracy of the proposed method is clearly superior to its 

counterparts. 

Table 14: Classification accuracy on each class of Test Image using unsupervised 

classification for different methods 

Class Ground 

Truth 

(%) 

LR 

Input 

(%) 

Bicubic 

(%) 

ScSR 

(%) 

ANR 

(%) 

CCR 

(%)  

JRSR 

(%) 

 

Proposed 

(%) 

I 3.60 3.16   2.98 3.16 3.02 3.04 3.45 3.49 

II 17.63 16.67  17.94 17.92 17.81 17.75 17.23 17.33 

III 51.75 53.01  50.13 50.51 50.45 50.54 51.68 51.69 

IV 20.09 19.69  21.25 20.94 21.17 21.14 20.65 20.58 

V 6.90 7.45   7.45 7.45 7.53 7.52 6.98 6.90 

                        

               
 
 

 



                                                                                                                                                                 

62 ISRO RESPOND PROJECT                                                                

 

              
Figure 34: Results of unsupervised classification on the Test Image for different 

methods 

 

7. Discussions & Interpretation of the results 

7.1  Design and implementation of MS image SR (MSISR) based on sparse 

representations and overcomplete dictionaries 
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The existing sparse representation-based method has been employed on the 

remote sensing images.  The quantitative assessments such as PSNR, MSSIM, 

Q-Index, SAM and ERGAS have been performed on various images size with 

upscaling factors 2 and 4 as shown in Table 2. Since both MSISR and SPARSFI 

are sparse representation-based methods, they give better results than the 

bicubic. However, these sparse representation-based SR methods are 

computationally heavy, OpenMP based multicore parallel processing technique 

was also applied to the algorithm to obtain the speed-up.  From Fig. 25, we can 

see that, multicore implementation increases the speed upto 10 times when 

utilizing the maximum cores (16) than sequential CPU counterpart. In the first 

work, we have shown some preliminary results of how sparse representations-

based SR works on remote sensing images and compared with some basic state-

of-the-art methods. Also, we have conducted a preliminary analysis to speed-up 

the sparse representations-based SR method using OpenMP-based parallel 

processing paradigm during the first year of implementation.   

7.2  Multicore Based Multispectral Image SR 

7.2.1 Super-resolution of QuickBird MS image: 

Results of SR are compared with those of other approaches. Fig. 23 depicts a 

visual representation of SR outputs. The results show that as compared to other 

methods, the proposed approach causes the least visible error. We also conduct 

a quantitative assessment in terms of PSNR, MSSIM, ERGAS, SAM, UIQI, sCC, 

and NIQE to support this point, and the results are shown in Table 5. It is 

discovered that with a zoom factor of 4, the proposed algorithm improves PSNR 

by 1.28 dB over bi-cubic and 0.2–0.4 dB over other MS SR approaches. Moustafa 

et al. obtain results that are similar to that of the proposed method. 

We have experimented with different zooming factors. PSNRs obtained for 4x 

zooming for the proposed method, bicubic, and Moustafa et al. are 28.86, 26.43, 

and 28.35 dB, respectively. Again, for 3x zooming, the proposed, bi-cubic, and 

Moustafa et al. values are 27.48, 25.89, and 27.21 dB, respectively. As a result, 

when compared to bi-cubic, our approach improves by 2.43 and 1.59 dB for 2 and 

3 zooming factors, respectively. Similarly, as opposed to Moustafa et al., the 

proposed approach improves by 0.51 and 0.27 dB for 2x and 3x zooming factors, 

respectively. The proposed method achieves superior results for other 
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parameters as well. Closer results in the case of Moustafa et al. may be attributed 

to the fact that it is a self-learning method; the dictionary is learned from the given 

LR image. The proposed method, on the other hand, makes use of a trained 

dictionary from an external dataset of noise-free images. An external database is 

preferred because it can have better features for learning from specific LR-MS 

images. 

7.2.2 Super-resolution of LISS-IV MS image: 

 For various zooming factors, SR reconstruction is performed. Fig.  23 depicts a 

comparison of output images with a zooming factor of 2 using various methods. 

There are also error images associated with each method. In comparison to other 

methods, the proposed method produces the least apparent defect. Table 5 

shows the results of various objective criteria for LISS-IV test images. It is obvious 

that the proposed approach outperforms other approaches in terms of efficiency. 

On an average, the proposed method for 2x zooming increases PSNR by around 

2.7 dB over bi-cubic output, although it is 0.3–0.4 dB better than Moustafa et al. 

and Lucas et al. Table 5 shows the values for MSSIM and UIQI have improved as 

well. The NIQE value has also been reduced dramatically, indicating a better 

reconstructed image. We also run SR on the same image for 3x and 4x zooming, 

and the proposed approach outperformed the others. 

7.2.3 Super-resolution of LISS-III MS image: 

SR is carried out with a zooming factor of 3. The results are analysed and 

compared with other MS image SR algorithms both visually and quantitatively, as 

seen in Fig. 23 and Table 5, respectively. The proposed method outperforms 

others even when the test LR image is zoomed in 3x. Visual analysis reveals that 

the proposed method causes less apparent errors than others. On an average, 

the proposed method for 3x zooming increases PSNR by around 1.29 dB over bi-

cubic output, which is 0.15–0.3 dB more than Moustafa et al., Chen et al., and 

Lucas et al.. Similarly, improvements in values have been observed for MSSIM, 

UIQI, and NIQE. We also performed SR on the same image for 2x and 4x 

zooming, and the proposed method outperformed the others. 

7.2.4 Super-resolution of panchromatic image: 

 Fig. 23 depicts the SR results. On average, the proposed method for PAN image 

SR improves PSNR by around 1.4 dB over bi-cubic, while it improves PSNR by 
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0.1–2 dB more than Yang's and Chen's methods. Similarly, improvements in 

MSSIM and UIQI values have been observed. In the case of the proposed 

method, the NIQE value is also greatly decreased, indicating a better 

reconstruction. 

7.2.5 Speed-up calculation 

The plot of computing time versus core number for the proposed dictionary 

learning algorithm in the Intel Xeon processor-based server method is shown in 

Fig. 26 (above). The execution time of the multi-core implementation of 256 size 

dictionary training using 16 cores is reduced to 1 min 49 s from its sequential 

equivalent value of 52 min 33 s. In this case, the speed-up is about 28 times. 

Similarly, as seen in Fig. 26 (below), the highest speed-up of the reconstruction 

method with respect to a 256-size dictionary is obtained corresponding to four 

times up-scaling, which is given as 255.23 s/21.26 s ≈12. 

7.3  MS image SR based on Dictionary Learning and Sparse Representation 

using GPGPU with CUDA acceleration  

The proposed algorithm is compared to state-of-the-art approaches in terms of 

PSNR, SSIM, ERGAN, SAM, Q-Index and sCC. Our algorithm obtains the best 

results for most of the test images, achieving best results on an average. The PSNR 

increases for our proposed method by around 4.79 dB and 1.37dB over the bicubic 

interpolation for zooming factors 2 and 4, respectively. The PSNR gain of our 

proposed method over the second-best method i.e.  JRSR [39] are 0.61dB for zoom 

factor 2.  But for zooming factor 4, the proposed method underperforms than JRSR. It 

also can be found in Table 10 that the SSIM, ERGAS, SAM, Q-Index  and sCC gains 

of our proposed method shows better results than that of others methods for upscale 

factor 2. These quantitative results show that our proposed method not only achieves 

lower reconstruction error but also retains more structural features than the other 

compared state-of-the-art methods. However, SSIM, ERGAS, SAM, Q-Index and 

sCC of the proposed method gives comparable results with JRSR for zoom factor 4. 

The most of compared state-of-the-art methods are based on global dictionary 

learning. It's possible that the global dictionary could not be able to represent all the 

image patches correctly. Although the restored HR may seem appropriate, the details 

obtained from the training database may be meaningless since global dictionary 

image patches are currently unavailable. Also, these methods have high 
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computational cost and memory consumption. In the remote sensing domain, global 

dictionary learning based SR methods are not convenient, because it is quite time 

consuming and expensive to produce the HR training data. On that account, our 

proposed method is based on adaptive dictionary learning where only the LR image 

is used for dictionary training instead of an external database. Reconstructed image 

may find many similar patches within the adaptive dictionary. Therefore, our 

proposed adaptive dictionary-based SR method gives state-of-the-art results in MS 

remote sensing imagery. 

To reduce computational complexity of the proposed method, highly parallelized 

algorithms using CUDA enabled GPU has been designed for real time SR 

reconstruction of MS remote sensing images. The CUDA-GPU parallel algorithm 

gives around 10-13 times speed up for dictionary learning as shown in Table 9. From 

the Tables 10 and 11, we have seen that reconstruction time is reduced by upto 11-

36 times and 60-186 times for upscaling factor 2 and 4, respectively than the CPU 

counterparts.  

8.   Deliverables & linkages to ISRO/DOS 

The complete source codes, executable files, and tested data for execution of the project 

will be shared with the National Remote Sensing Centre (NRSC). 

Developed parallel SR algorithm-based GPU-CUDA can be used in many remote 

sensing applications such as urban mapping, environment monitoring, military 

surveillance, intelligence gathering, and disaster management, etc. It can also be 

applied to ISRO’s Bhuvan geoportal for navigation. 

8. Conclusions 

From the initial work of MSISR, we have shown some preliminary SR results and 

compared with a few basic state-of-the-art methods. We have also developed an 

efficient multicore parallel processing-based single image SR for multispectral satellite 

images. The developed system can reduce computational complexity by ten times 

compared to a highly efficient sparse representation based single image SR method. 

Besides improved visual quality, the results show fair PSNR and MSSIM improvements. 

In the MCA based SR method, we have demonstrated a sparse representation and 

morphological feature extraction-based MS SISR technique. Both the CARTOSAT-2 

PAN image dataset and the LR-MS datasets from QuickBird and RESOURSCESAT-2 

are used to learn overcomplete dictionaries. For evaluating reconstructed HR MS 
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images, we use both objective and visual analysis. As the results are compared to those 

of other recent methods, it is found that it outperforms them in both qualitative and 

quantitative terms. The proposed algorithm is also accelerated by using OpenMP-based 

parallel processing. 

In the GPU based SR work, we have found that adaptive dictionary learning SR method 

is preferable than global dictionary learning. Experiments have shown that our algorithm 

offers advantages in terms of better visual outputs and objective criteria as compared to 

other state-of-the-art methods considered. The CUDA-GPU implementation of the 

proposed method achieves significant speeds up in the computational time; about 11-36 

times and 60-186 times for upscaling factors 2 and 4, respectively than the 

corresponding CPU implementations. 

 

9.  Future Plans 

In the future work, the MCA-based proposed SR algorithm can also be implemented on 

GPU using CUDA to obtain speed-up that would be suitable for real remote sensing 

applications. In GPU-based proposed work, new feature extraction schemes and 

dictionary learning techniques can be explored. Various optimization techniques can 

also be used to improve the perceptual quality of SR results. The proposed GPU-CUDA 

based parallel dictionary learning and reconstruction algorithms for super-resolution 

might be improved for achieving more speed-ups for real time remote sensing 

applications.  

In the recent years, deep learning approaches have achieved promising results in SISR 

system. As a future work, deep learning model will be incorporated to the proposed work 

to obtain further improvement in results.   
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