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{Please include sufficient details in sections 8-10 5o as to Nicllitate proper evaluation of yoor
project.)

File Mooz 8 1S RIFDRPS/POLICY-102006- 17 dated 02708/20017
(as mentioned in sanchion letter)

Date of Sanetion: F2082007
Subject Aren: Medical Image Processing
I, Principal Investigator: Prof. Bhabesh Deka
(Name & address)  Departmient of Electronics and Communscatien Engineering
Tezpur University, Napaam, Tezpur, Assami, India, PIN: 784008

Project Title: Development of Parallel Processiig Embedded Hardware for Super-resolution of Diffusion
weighted and Spectroscopic Magnetic Resonanoe Images

[

i Totnl Cost of the Praject: 16, 47 05%-
4 Dt of Commencement of the Project: October, 2017
5. Dwration of the Project: 1 Years

6. Duleof Completion; 3] 71272020

=4

Oibjectives of the Project
[, Todesign a single image SR (SIS} algorithon using the concept of pamilel computing
. Toimplement SISR techniques using the GP-GPL hardware
M. Todesign and develop novel approsiches for ereating GP-GPL modules of single image super-
resolution tecanstruction
V. Tofocus on real-time operabiling and optimal resource utilizations
Y To evalume and compare performances of different algorithms for setiing benchmarks for super-
resolution recanstruction of DW and Spectroscopic MR iimages
8. Salwnt Research Achievements:
Please find detuils in Annexure |
#.1 New Findings/Achievemnents1PR Potential:
» Single image super-resolulion based on sparse representations over & leamed overcomplete
dictionury for DW and MRS images

» Single image super-resolution bascd on sparse representations based coupled overcomplere
dictionarics are learnt using W and MRS images and unlized them to extact @ pricrl HR

information.



= MR image super-resulusion roconstruction using sparse representation on paich-wise of high-
resalution patches from low-reselution festure paiches pairs,

= MR image super-resolution reconstruction” not only expleits the sparsity of ME image bui alsu
utiitzz the non-local self-similarity of patches of the input LR image as prios knowled ge.

= Hardware implemented using the GP-GPU hased parnlle] slong with sequentinl Tor real clinical
applicatons of MR mages.

B.2 ProductTrocess Developed: A novel singe smnge super-resolution rechnique is developed for
Diffision weighted and Spectroscopic Magnetic Resonance Timages.

B3 Patent{s) Applied lur Taken, if mny: NA
B4 B Tech Project/ M. Tech Thesis & YES

H.Tech Praject: 4 Nos,
M Tech Thesis: 2 MNos:
Ph Iy, il any
Consuliancy
4, Conelusions Summarizing the Achievements Indicating the Scope for Futre Work.
We demonstrate i novel SISK method using sparse reconstruction based on image sparsity using trained
dictionary and non-local sclf-similarity and that the SISR algorithm based on the sparsity over leamed
overcomplete dictionary along with a non-local TV regularization provides consistent SR outputs for
clinieal DW and MRS images at different upscale ratios, Extraction of proor information both external and
intermal s proved to be very efficicnt in preserving detuiled information in super-resolved clinicsl DW and
MRS images. Visual and quantitative comparisons with state-of-the-art SR methods have demonstrated the
superionity of the proposed method. It is validated both for real MR and sythetic images, found is potential
to preserve fine details and structures at diffecent upscaling mtios: Finally, use of Multicore parallel pro
cessitg o general-purpose graphics processing umis (GP-GPLUs) hardware to get computationally efficient
resiilts, makes the proposed algorithm not only hghly effective, but also practically doshle Moreover, at
present, the mode] we wse assumes that the avaiiahle LR image is noise free, which wenld not be the ease
every titne. For noisy image, image denoising 15 required prior 1o super resolation slgorthm
100 List of Publications Arising from the Project (please give Anthar (), Title, Jowmal and Year),

I, Bhabesh Dukon, Sumit Daste, Helsl Uddin Mullah, snf Suman Haearika, “Diffusion-weighted snd BpECt MRS
MR super-resolution using sparse representations,” Biomedical Signal Processing und Contenl, vol §0, 2020

. Bhobesh Deia, Helal Uddin Mullab, Sumst Datta, Vipyn akstiod, and Rajsrajeswari Camesan, ~Sparse
Represenintion based Super-Resolution of MRI Images with Non-Local Total Viriation Reputirization,” SN
Compuler Sciense, Springer, 2024,

4. Bhabesh Deka, Heldl Uddin Mullah, Suma Datte, Viggys Lakshmi, and Rajarajeswari Ganesan, *"Spane
Represertution Based Super-Resolution. of MR! lmpges with Non-Local Total Variatlon Regularization” m
Internutiongd Conference on Puttemn Recognition snd Machine intelligence, pp, 78-88, Springer, 2019,
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(Imvestigntors may please note that sections ¥-10 of the report will serve a8 essential inputs for ciperts 1o judge
the siccess of the project, There must therefore be included in sufficient detail )



FORMAT
For
UTILIZATION CERTIFICATE
(FY 2017-18)

Sanction Letter No, 8- 15/ RIFDVRPS/POLICY-1/2016-17, Date: 2 August 2017

A. NON-RECURRING

sl Mame of the Ao Amount | Amount Unspent
No. Equipment Sanctioned | Released Utilized | Balance
Procured () (%) (%) ()
Not applicable 2 14,00,000,002 14,00,000.00 NIL 14,0001, (MM 0HD

B. RECURRING

S| Name of the [Sanctioned  |Amount released Amount Unspent

No. Expenses | Amount for FY 2017-18 Utilized Balance
S (%] (4] (%) %)

| Wot applicable IA?.ﬂﬁ‘}.JTI{L_ 22235300 MIL 2.22.353.00

Certified that the gramt has been utilized for the purpose for which it was sanctioned n
accordance with the “Terms and Conditions™ attached 10 the grant. 1T, as a result of check or
audit objection some irregularity is noticed at a later stage. action will be taken to refund,
adjust or regularize the amount objected 1o.

Finance Officer Registrar (Principal’ Director (Sgnatung
& Seal) (Signature & Seal)

¥ Finance Officer + Regisirar

Tﬂ':pur 'f.'rﬂ?'l"l‘f.ﬂlri' T-!'IPII'J" Uﬂlﬂ'ﬂ"ﬂ'ﬂ"

Dated: Tezpur University

Mapaam, Tezpul, Assam-T84028

Note: The Uiilization Certificate (UC) will be signed by the Registrar! Finance Officer in the
cage of Universities, Principals in the case of Colleges and Executive Heads of other
Institutions. The Provigional UC may be countersigned by the imtemal auditors
wherever the system of the internal audit exists, In case of the Self Financing/ Private
Institutions, UC has to be signed by a Chartered Accountant.

¥ This is to be submitted everv financial vear.



FORMAT
For
UTILIZATION CERTIFICATE
(1 April 2018 - 15* August, 2018)

Sanction Letter No. 8-1 3RIFDVRPS/POLICY-1/2016-17,

Date: 2 August 2017

A, NON-RECTRRIMN(:
8L MName of the Amount Amount Amount Linspemt
N, Equipment | Sanctioned | released Utilized Balance
_ Procured (2) (2) G R N .
I Workstations with | 14,00,000.00 14,00,000.00 BAT. 000 3,52,230.00
CP-GPU Hardware Iyl | |
2. RECURRING
Sl [ Nameofthe, Amount Amount released| Amount Unspent
MNo. | Expenses | Sanctioned () | for FY 2017-18 | Utilized Balance
e (%} (%) (T} |
1 Traveling 6, 05600
2 [Consumables!|  2.47.059.00 2,22 353.00 11,457.00
Stutioneries o
Total 2,47,059.00 2,22,353.00 17,513.00 | 2.04,840.00

Certified that the prant has been wtilized for the purpese for which it was sanctioned in
accordance with the “Terms and Conditions™ attached to the grant. If, as a result of check or

audit ohjection some imégularity is noticed at a later stage, action will he taken to refund,
adjust or regularize the amount objected to,

(/
i\

chiffhﬂﬁ'liliﬂ:ipﬂ].’ Dhirvector (Signature
{SignaguR égiBenkr
Tezpur University
lezpur University
Mapaam, Tezpul, Assam-T84028

Finance Officer

& Sealy Finance Officer
11E
Datcd: Tezpur Untvers

Note: The Unlization Certificate (U'C) will be signed by the Registrar’ Finanee Officer in
the case of Universities, Principals in the case of Collepes and Executive Heads of
other Institutions. The Provisional UC may be countersigned by the internal auditors
wherever the system of the internal sudit exists, In case of the Self Financing/
Private lnstitutions, UC has to be signed by a Chartered Accountant.

* This i5 to be submitted every financial yvear.



Research Promotion Scheme

PR

(1% April 2018 - 15" August 2018)

AICTE File No. : B-TARIFIVRPSPOLICY -1/2016-17, Date: 2 Aupust 2017

Title of the RPE Project : Development of Parallel Processing Embedded Hardware For Super-Resalution of
Diffusion Weighted and Spectroscopic Magnetic Resonance Images

Name of the P.I. : Dr. Bhabesh Deka
Associate Professar
Dept. of ECE, Tezpur University

Sanction Order Grant Grant | Detalls of expenditure Incurred]  Amount Rs. |
MNo. & Date Sanctloned | Received Item wise {In @ach head)
L] A7 I (2]

L
NON-RECURRING
140000000 14,00,000.00 (1. Workstation with Windows 10

Pro, Dell Precision Tower SR10 | BA7 77000
F. MNo. B-15/RIFDY and Monitor {2 Nos.)
RPSPOLICY-1! 2, P00 GPU Hardware (2 Nos.) |
201617, RECURRING
3, Traveling (for data collection)
Drate: 2 Augus 605600
2017
24705900 | 222353.00 | RECURRING
{4, Consumables / Stationeries
L1, 457.00
Total Re.: £.65,283.00
{IW i2) G%//
Signature of P Mame and Skgnature of
with Seat Assoclate Profesacs e Head of Institution with Seal
Degatment of Eleckonis & Coma. ERGY « Registrar
— Taapuar napgralty Tezpur University
g
il ﬁ‘l
{3)
Signoture (with Seal ) of the Finance Ofhcer (4) Signature of Charterad Accountant:
Auditor/Accounts Officer Name of Chartered Accountant: $hekhan J’qla.m.-—.J
{IF 1 s GavidGove. Aided Tnstitute) Membership No: 3104 79
Fimance Officer Hubbicr stamp;
ezgun , MScam

Tezprur Einiversiiy Full Address of CA:
e A\

Note:-1f it is more than one page, each page must be signed & Em}npadéﬁjl gfm!e.;ﬂ.n_




FORMAT
Far
UTILIZATION CERTIFICATE
(FY 2018 - f'ﬂ

Sanciion Letter No, 8-15/RIFIVREPS/POLICY-1/2016-17, Drate: 2 August 2017

A, NON-RECURRING
sl. | Nameofthe Amaouint Amount | Amount Linspent
Mo Equipment Sanctioned | released | Utilized Balance
_ Procured (2) . S (2 &
| | Workstations and | [4,00,000.00 | [400,060.00] 138673500 | 1326500
VGP-GRY Hesdware | i
H. RECURRING
Sl | Nameofthe.  Amount Amount released|  Amoumnt Unspent
Mo. | Expenses Sanctioned (F) (%) Liilized Halanee
= = (1) L2
1 Traveling L8 500 00
|
2 | Consumables -": 2 AT, 253,00 B3,606, 06 [.20,148.00
Stoticnerics | i 4
- Totald 247,059, 00 222.353.00 10220500

Certified that the gramt has been wiilized for the purpose for which it was sanctioned in
accordance with the “Terms and Conditions”™ attached to the grant. If, as a result of check or
audit objection some irnegularity is noticed at a later stage, action will be taken to refund,
adjust or regularize the amount objecied 10,

e

Finance F¥disace (Officer

Registrar/Principal! Dircctor (Signature

& SealWezpur Umiversery (Bisgrizvemerd: Seal)
rour Liniversir
Dated: [~ ?{ﬂfﬁ? Te:r.pu‘::rhnium*sit}' "

Mapaam, Tezput, Assam-784028

Note: The Utilization Certificate {UC) will be signed by the Registrar! Finance Officer in
the case of Universities, Principals in the case of Colleges and Executive Heads of
other Institutions. The Provisional UC may be countersigned by the internal auditors
wherever the system of the internal audit exisis. In case of the Self Financing
Private Institutions, UC has to be signed by a Chartered Accountant,

* This is to be submitied every financial year.



Research Promotion Scheme

(FY 2018-19)

AICTE File Mo, s B=IS/EIFDVRPSPOLICY-172016-17, Date: 2 Augest 2017

Title of the RPS Project : Development of Farallel Processing Embedded Hasdware for Super-Resolution of
Diffusion Weighted and Speciroscopic Magnetic Resanance Images

Wame of the P.I. : Or. Bhabesh Deka
Aszsociate Professor
Dept. of ECE, Tezpur Liniversity
Sanction Order Grant Grant Details of expenditure Incurred Amount Rs. |
Ho. & Date Sanctioned | Received Ibem wise (Imeach head)
_® (2) B ]
MON-RECURRIMG
Fb D0 GOHE G0 14,00,000.00 (1, Workstation with Windows 10 BT 77000
| Pro, el Precsion Tower 5810 |
F. Mo, §-1 5 RIFDY and Monitor (2 Nos)
BPEPOLICY-1/ (2. GP-GPU Hurdware 538,965,000
201617, |
| RECURRING o
Date: 2 August (3. Traveling (for data ¢ollection) TR 590900k
2017 2.0 055 | 2,22 353,00
| RECURRING S
_ i, Consumables | Stationeries A3.606.00
el el - o
2 Tortal s : 14b, R b, 00y

o LS

Sigaature of Il &

)

NMI“ %un of

i)

cloal Imumstigator

whih Seal A ) Hend E 3 mjuﬂ will Seal
"al{{;:tgmnfﬂwﬂ R Eﬁd Tal
Tezpur University
13] : f
Sigeature (with &Eaﬁﬂnfﬂﬁmn (4} Siznatug ':"'I arftretddboun tant
fuditerffcoounts Officer Na {3_,.. artered Accodmbant:
“""j:‘.-ﬁ?}ﬁatg‘l‘}ml’ﬁ‘ Tastituie) Me i E
’ Rubl
Tezpur Limiversesy |r:|:

Mhaie:

Note-1F it is more than one page. cach page must be signed & Stamped in arl .mm*mr:,



FORMAT
For

UTILIZATION CERTIFICATE

(FY 2009 - 200

Sanction Letter No. B-1 5/RIFD/RPS/POLICY-1/2016-17

A. NON-RECURRING

Date: August 2, 2017

1 Name of the Amount Amount Amount Utilized Unspent
Mo, Equipment | Sanctioned | released () Balance
Procured () (8] _ (
I Workstations and | 14,00,000.00| 14,00,000,00 (FY201% - | (FY2019 -
GP-GPU Hardware 1019) 20240 13,265.00
L | 138673500 | Nil
B.  RECURRING
Sl | Wame ofthe] Amount Amous Amount Utilized Imspent T
No. | Expenses Sanctioned released (%) (E4 Balance
() , (%)
1 Traveling (FY2018-| (FY2019 -
2019 20207
247,055,00 2.22.353.00 18, 500.00 il
2 | Consumables / E3.606.00 14,063.00 |
Stationeries
Tatal | 24705900 | 2.22353.00 [ 10220500 | 14,063,00 | 1.06,085.00 |

Certified that the grant has been utilized for the purpose for which it was sanctioned in
accordance with the “Terms and Conditions” attached to the grant. If, as a result of check or
audit objection some irregularity is noticed at a later stage, action will be taken 1o refund, adjust
or regularize the amount ohjected io.

(Signature & Seal) (Sighature & Seal)

Dated: Tezpur University -
MNapaam, Tezput, Assam-T84028

Note: The Utilization Certificate (UC) will be signed by the Registrar! Finance Officer in
the case of Liniversities, Principals in the case of Colleges and Executive Heads of
other Institutions. The Provisional UC may be countersigned by the internal auditors
wherever the system of the internal audit exists. In case of the Self Financing/ Private
Institutions, UC has to be signed by a Chantered Accountant.

* This is to be submitted every financial year.



Research Promotion Scheme

{ FY 201920 )
AICTE File No. : B-15RIFD/RPS/POLICY-1/2016-17, Date: August 2, 2017

Title of the RPS Project : Development of Paraliel Processing Embedded Hardware for Super-Resolution of
Diffusion Weighted and Spectroscopic Magnetic Resonance Images

Mame of the P.1. : Dr, Bhabesh Deka
Professor
Depi. of ECE, Terpur University .
Sanction Order Grant Grant Details of expenditure Incurred Amount Rs. |
MNo. & Date Sanctioned | Received item wise {In each head)
i) (%] {7
NON-RECURRING (2015 - 1%
14,00,000.00/ 14,00,000.00 ||, Workstation with Windows 10 B.AT, 770,00
Pro, Dell Precision Tower 5810
F. Mo, B-15/RIFDY and Manitor (2 Mos.)
RPS/POLICY-1/ 2. GP-GPU Hardware 5.38,965.00
O16-17, |
RECURRING (2018 - 1%)
[Date: 2 August 3. Traveling (for data collection) 18.595.00
D017 247,059.00 | 2,22.353.00 o
4. Consumables | Stationeries
83,606, (0
|RF£I_J RRING (2019 - 20y 14,063.00
8, Consumahles / Stationeries
Total Hs.: 15, 03,003.00
_hF'
LY
() Lt (2) %ﬂu
Signature of PI1 Mame and Signature of
with Seal Professor Hexd of Institution with Seal
Depariment of Elecsronic & Comm, Engg.
Taaput University
(3) aﬁ%f\ﬂ*’f S M
Signature (with Seal | of the Finance Officer! (4] Signature of Chartered Accountant:
AuditorfAccounts Officer Name of Chartesid Accountant:
(Iricis GoviJGove, Alded Institute) Membership Mos
Bubber stamp:
Full Address af CA -
Diae: UbIne~ 20504 39 AARA G E 2RI4

LATE- Minfico o
Note:-If it is more than one page, each page must be signed & Stamped in all annexure,



UTILIZATION CERTIFICATE

(1" April 2020 —31% Dec 2020) .
Sanction Letter No, B-15/BIFDVRPS/POLICY-1/2016-17 Dute: August 2, 2017
A. NON-RECURRING
8L ™ame of the Equipment Ao Amonnt relensed |  Amoit Ulnilized Ulnspent
Mo Procwred Sanetoned (%3 (T4 Balupce
(T 4]
1 Woskstatisms and GPAGPLT T4, 0 EHI0LAIE 14, 00,000.00 (FY201H - 219)
Hardware 13,86,718.00 Mil
R T v (FY2019 - 2020
- I .||
1 Machonk Acocssories (1" Apnil 2028 - 3|
Do, 20200
13.265.00 N
B. RECURRING
8. | MNameaofthe | Amoum Amamt Armount Urilized Unspent
No. | Expensea  |[Sanctioned (% ) | relessed (¥ ) i} Balunce
[}
I Traveling (FY201% = | (FY200%- |(1™ April 2020
2019 20200 — 3" Deg.
ZAT 05900 | 22235300 | 18,599,00 Ml 2020 Nil
il
E] |Lhns|.nnu.htea B3,606.00 | 14063 | |,06,045.00
! Stationencs
ol 24705000 | 2,27,353.00 || 02205 00) 14063 | .06,085.00

Certified that the grant has been utilized for the purpose for which it was sanctioned n seeordance with
the “Terms and Conditions” attached to the grant. If, a5 a result of check or audil objection some
irreglarity is noticed ot o later stape, action will be taken to refund, adjust or regularize the amount

objected .
=t
. g Vet
Finance Officer  Fur e L7100 RegistrarPrincipal! Directar
{Signatare & Seallepur Unverain (Signuture & Seg)
Dated: Tezpur University! <-/47 Lniverin)

Napaam, Tezput, Assam-TSHEE

Note: The Utilization Certificate (UC) will be signed by the Registrar’ Finance Officer in the case
of Universities, Principuls in the case of Colleges and Executive Heads of other Institulions,
The Provisional UC may be countersigned by the internal auditors wherever the system of

the internal sudit exists. In case of the Self Fimancing/ Private Institutions, UC has to be signed
by 0 Chartered Accountant.

* This is to be submitted every finaneinl yenr.




AICTE File No.

Research Promotion Scheme
FORMAT FOR STATEMENT OF EXPENIMTURE

(1™ April 2020 — 31" Dec 2020)

: B-1SRIFDVRPSPOLICY-1/2016-17, Date: August 2, 2017

Title of the RPS Project : Development of Parllel Processing Embedded Hardware for Super-Reselution of
DhfTuson Weighted snd Speciroscapic Magnetic Eesonnnee Fimaged

Mama of the P.I.

: Dr. Bhabesh Deka

Professor, Dept. of ECE, Tezpur University

Sanction Order Grant Grant Details of expenditure Incurred Amount Rs.
MNo. & Date Sannr:lnhed HHE:HHI ltem wise in mf::u:haad]
) |
| NON-RECURRING (201% - 10}
14,00.000,00] 14,00,000.00 |1, Workstation with Windows [ BT T
Pru, Deldl Precision Tower 3810
F. Wo. 8-15/RIFDY arvd Mositor (1 Mos.)
RPS/POLICY -1/ | 2, GP-GPLY Hardsware 3,38 Y5 H
We-ry, 0
ON-REC I'!-IRI"'IL. (1™ April
{Drates 2 Aupast 120 - 31" Dec. 2020)
2017 1. Machook Accessaries 13,260 0
iHEElIRHIHG (IR - 1%)
@, Traveiing (for dara collection) 18,599.00
i5. Consumables / Stationeries B3, G060
RECURRING {2019 - 20)
W6, Comsumables / Stationeries 14,06.3.GIY
RECURRING (1™ April 2020 |
= 31% Dwe. 2020)
(7. Comsumables’ Stationeries 3O
Total Rs.: IM‘E.HJ.[HII

(1) M

w

Mygmee and hign’llur: aof

Head of Institution with Sewl

E:g i_ﬁp,l;;q u!’fil

I e Regisirat
s Tezpur Umivers il
= 4
L.
‘a:l_'_-'_#""" f'-. =
R — T L :. :a

Signatnre {with Seal ) of the Finance ﬂ[ﬂtﬂr
Auditor/accounts Ofilcer  Ejpuaee Lo
(I s GovL/Gove. Alded IfﬂHlEr} fIMiuerail

Fr.nhl:ur stamgs;
Full Address al A :

UbTH - 212104 T ARAATIM 2921
Mote:-If it 15 more thitn one page, eitch page must be signed & Stamped in all annexme
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Abstract

Di;EI.IEinIl—.WE'iE,thd magnetic resonance imaging (DW-MRI) and spectroscopic
MRI (MRSI) are powerful diagnostic imaging tools as they provide complementary
information to that provided by conventional MRL These images are also acquired
at a faster rate, but with low signal-to-noise ratio. This limitation can be overcome
by applying image super-resolution technigques. lmaging is done at a low-resolution
(LR) as the scanning time for high-resolution (HR) MR images would be very long

and not practical besides being expensive for imaging.

This report. presents a single-image super-resolution (SISR) technigue via sparse
representation for DW and MRS images based on nov-local total variation (NLTV)
approach to regularize an ill-posed inverse problem of SISR. The proposed sparse
representation over a learned overcomplete dictionary based SISR technique for DW
and ‘MRS images. The proposed SISR method incorporates patch-wise sparsity
constraint based on external HR information together with the NLTV as internal

information to make the regularization problem mere robust.

This report also presents a novel SISR scheme to improve spatial resolution
of DW and MRS images. It 2 based on patch-wise sparse reconstruction of HR
patches from LR feature patches utilizing a pair of learned overcomplete dictionaries.
Reconstruction not only exploits the sparsity of MIt image but also utilize the non-
local self-similarity of patches of the input LR image as prior knowledge.

DW-MRI and MRSI along with a synthetic image.  Performance evaluations
based on different matrices hesicdes visual analysis are cartied out to validate and
rompare the obtained results with the state-of-the-art. It is observed that the pro-
posed method clearly outperforms recent methods in terms of both guantitative
and visual analysis. Finally, the proposed algorithm i also implemented using the
GP-GPU hased parallel hardware along with sequential implementations in order
to showease its potential for real clinical applications.
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CHAPTER 1

Introduction

1.1 Diffusion-weighted imaging (DWI) and spec-

troscopic magnetic resonance imaging (MRSI)

Diffusion-weighted imaging (DWI1] and spectroscopic magnetic resonance imaging
{MRSI) are two advanced MR imaging (MRI) techniques. DW images provide in-
formation of the :'.utr.ru._:-ul phivaiology of an organ by capturing the information of
the diffusion of water molecules [2]. Abnormalities can be detected by studying
the changes in diffusion pattern from these images. Water molecule diffusion pat-
terns can reveal microscopic details sbout tissue architecture, either normal or in a
diseased state. On the other hand, MRS images provide information of metabolic
changes based on chemical composition of tissues. Normal MRI sean may reveal the
shape and sige of 4 tumor, while the MRSI provides additional information about
the metabalic activity occurring in the tumor [22]. It can be used to monitor bio-
chemical changes in tumors, stroke, epilepsy, metabolic disorders, infections, and
neuro-degenerative diseases, ete. MRSI also has the same advantage of fast scan
time as DWL In spite of advantages of DWI and MRSI, the rist in the cost of scans
and poor signalk-to-noise ratio limit their clinical use, These limits can be overcome
by image super-resolution (SR) methods [3], which estimate the SR image from one
ar more obsorved low-resolution (LR} image(s).

A blodk diagram of the MR image scquisition system producing LR MR im-
ages is shown in Fig. 1.1, which typically possesses various artifacts, like motion
blur due to patient movement and breathing; distortions due to magnetic coil fiilel-

inhomogeneities and instrumentation noise; downsampling due to poor SNR and
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Figure 1.1: (verview of practical MR image acquisition madel [source: [34, Fig. ]

slow acrquisition. We can also describe this acquisition model mathematically by
Y =5HX +n, (1.1)

where the observed LR image Y € RFF is the blurred and downsampled version
of the corresponding HR image X € R, H is the blurring operator, § is the
downsampling operator and n s the measurement o instrumentation noise. Fg. 1.1
i known as the global imaging model, which is an ill-posed inverse problem as for
a given LR image Y, there can be infinitely many cholces of X that would result
into the same Y. To regularize the above problem and obtain the hest possihle or
close approximation of X, additional information, like sparsity of image data may

be inclided into the model. Thus, we get a regularized inverse problem as follows;
X = H.rgm]'EnHSHI—Y'|§+A1l|-'mm;t_.,[xj, (1.2)

where Wouminy 0 the regularization term is an operator on X that sparsifies the lat-
ter. The above model was successfully used for SISR for the first time by Yang et al
[43], and recently, in [13] for the SR of MR images, which may be improved further
for image SR by putting additional regilarizations into it. In the last few decades,
many least-square regulanization algorithms have been developed for the restoration
of high quality images from their corresponding degraded versions [5, 6, 28, b3]. SR
mothods are categotized as cither single-image SR (SISH) or multiple-image SH.
QI9R is more preferred in MRI as multiple inages are difficult to be acquired for the
same cross-section, taking considerable sean time. Sparse representation approach

has proved to be very effective in case of SISR.
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1.2 Related Works

SR method was first applied to MRI by Fiat et al [18]. In the last two decades, SR
techniques have heen suecessfully applied to MRI to increase spatial resolution (30,
31]. Generally, based on the number of available input LR images, SR methods are
classified into two types. They are namely, the multiple image SR and the single
image. SR (SISR), respectively. The fundamental idea behind the eoncept of SR
5 that information from several sources enrich the overall content of the super-
resolved image. The first category of methods refer to the same idea [20, 21 In
the SR of MR images, SISR is preferred to multiple tmage SR as it is not possible
to collect different. diffusion or spectroscopic images (captured at different angles,
time instants, ete,) of the target field-ol-view (FoV) in 2D due to random movement
of water molecules present in the tissues. Huang ef al. [37] first presented a mult-
frame image SR technigue. whiere the sub-pixel shifted LR images are generated by
using the shifting property of Fourier transform; LR images are then registered into
a HR grid through a nop-uniform interpolation. The performance of this method
is very limited as it does not utilize any sort of a prieri information. Moreover, it
is not very practical due to the problems in acquiring multi-frame LR images [3] of

the same scene,

Alternatively, SISR technigues are widely explored that takes only the avail-
able single LR image as its input and then generates the target HR version from
it. A basic approach of SISR is the image interpolation, e.g. bicubic interpolation
or the edge directed interpolation (EDI) as reported in [45], arientation-adaptive
interpolation [38], ete., which focus om maximizing the artifact free important infor-
mation for improved interpolation. However, these methods have the lendency to
introduce blurring artifacts and fail 1o generate high-frequency details during recon-
struction, Reconstruction based 531t methods using explicit o prior mformation in
borms of image gradients is introduced in [36] in order to restrict the solution space
of the target HR image for producing the sharp details. These methods are usually

time consuming and performances are not good for higher upscale factors. Learn-
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ing based methods are introduced which can recovet HR image with sharp details
within a reasonable computational eost through learning of statistical relationships
between the LR and HR images patches from a large training dataset. An example
in this category is the work of Freeman ef al, [10]. They estimated toxtures and
ather fine details present in the HR image by modeling natural images using the
Markov random field.

Sparse signal recovery nsing sparse coding theory is successhully applied to SISR
technigques for improved performances in varions works (13, 23, 26, 29, 32-34, 43, 47].
Yang ef ol [43] introduces the sparse coding based image super-resolution (SeSR)
for gemeric images by learning joint overcomplete dictionaries from external datasets.
Although dictionary based SR methods gives outstanding results, they are relatively
slow as the dictionary is to be learnt from a larnge pool of dataset of similar images or
from several patches extracted from the input LR image itscdf. If the computational
cost i not & eonstraint them ﬁ.]mrw- ocoding clearly demonstrates its advantage in
terms of higher SNK and better reconstruction quality in the S| of MR image [33].
However, because of severe ill-posed nature of the SR problem, recovered HR images
need to be stabilized or re-tuned with better pateh consistency approximations,
Zhang et al.  [A7] proposed a SISR method that vses a patch-based non-local
regularization framework for SR of bran MR image to get more stable ontput.
Shi et ol [34] proposed another method using low-rank approximation and total
vafation [LRTV) which uses both local and global information in MR image to
remove blurring artifocts, In [48], anthors applied a post-processing method hased
on sparse derivative prior to romove blurring artifacts for the 3R of MR image.
Jain et al. [23] proposed a patch-wise regularization based spectroscopic MR image
SR method that is able to obtain better tissue contrast and structural information
compared to the conventional interpolation technigues. Recently, a collaborative
sparse representation based regularization with non-local self-similarity (CRNS) is
proposed by Chang ef al, [11], which is able to provide effective recovery of high
frequency information and minimum error for the SR of natural images. In another

work [10], authors presented a joint SR technique by combining the group-residual-

hacad waerlarieeat s FITMRY with Mdmoraerrecoinn_ha cear] roersilawigatioe (2R TRERY
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for better restoration of high frequency details in the SR output. The above study
clearly states that the non-local self-similarity [NLSS) within patches of the LR
image is highly crucial besides HR information extracted from external datasets
and they mﬁp]mnnt sach other for the successiul recovery of HR image from the
single LR image.

Regularization based SISR methods stabilize the inverse problem of SR by in-
tegrating a priori information. This ensures that while solving the image recon-
struction model, the solution also incorporates a few desived properties of the ex-
pected SR output by inducing a a priori term, which may be sither preservation
of edge features hased on bilateral total variation, gradient profiles, ete. [27, 30].
These methods require iterative implementation and suffer from slow convergence
and high computational costs. Moest of the methods in this category fail to remove
the high-frequency noise or blurring, while simultancously preserving the edges or
_ ather details, Others change the image contrast during SH image reconstruction
and provides inadequate visual quality for higher upscale ratios. On other hand,
learning based SISKR methods have hecome the most popular among the state-of-
the-art. These methods involve a traiming stage to learn the relationship between
LR and HR cxamples and the same information is utilised as regularization during
reconstruction, There are different learning schemes, like example learning [19], sell-
learning [44], dictionary learning 43, ete. Hecently, the dictionary learning based
approach along with sparse representation has attracted the highest attention from
the SR research community due to its high accuracy. With the contimiing effort
for the development of botter £-minimization tools and dictionary learning strate-
gies, such SH algorithms have the Rexibility for mcorporating better regularization

schemes for better and stable results [10, 25].

Recently, the nen-local self-similarity (NLSS) has been used in the restoration
of fine details and textures of natural images [40, 54]. This is based on the fact
that these images contain several patches or regions i the entire image, which are
similar but may not be connected in the image. In several works, the non-local means
(NLM) [50] and the non-local total variation (NLTV) [32] based regularizations are
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applied to incorporate information of the local statics during sparse reconstruction
of HR patches. Non-local low-rank regularization (NLR) has been introduced in
[15) that considers a matrix of the non-local similar pasches and performs low-rank
minimization of it to enhance non-local similarity among the reconstructed HRE
patches. Authors in [46] effectively applied NLR besides collaborative representation
based regularization for the SR of natural images with state-of-the-art results.

1.3 Motivation of the Work

SISR iz more preferable in medical imaging as multiple images are difficult to be
acquired in a particular cross-section, taking considerable scan time. Sparse repre-
sentation approach has proved Lo be very effective in case of single-image SR, But
the stabilization for the solution of inverse problems is a major issue in sparsity

apprdach, which can be overcome by regularization.

SISR 5 more preferred in MRI as multiple images are difficult to be acquired
for the same cross-section, taking considerable scan time, Sparse representation
approach Lias proved to be very effective in case of SISR. The general idea behind
sparse representation based image SR is that an overcomplete dictionary s hrst
learmt from an external HR database, which is then explored for inducing HE infor-
mation in the reconstructed image via a sparsity regularization approach. Together
with a robust dictionary learning, the stabilization of the solution from sparse repre-
sentation i a major concern in this approach, which can be overcome satisfactorily

by incorporating relevant a prisri information into the reconstruction model,

SR problem s highly ill-posed in nature and methods applying the sparse coding
theory tries to impose prior knowledge in order to regularize it optimally. In this
context, sparge representation based SR problem can be made more robust and
effective by putting more effort in integrating more relevant information into the
model. Furthermore, quality of reconstructed images may also be improved by using

overcomnplete dictionaries learnt from example image patches containing sienilicant
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high frequency features in it at varying levels of upscaling. Moreover, in order
to make the computational cost of the SH algorithm chnically relevant for MRI,
we can adopt: & hybrid computing environment, where more complex and intensive
mathematical upur.r:.ti-;}m may be carried out in parallel and less significant and
routine mathematical operations may be implemented in serial. Most of the work
reported in the literature either uses learned dictionary which act as a source of

external information to enhance resolution of the target LR image [23, 26, 33, 43],

1.4 Major Contributions

The major contribution of this report are as lollows:

t= To develop a SISR method for MR images using sparse representation along
“ with non-local total variation (NLTV) regularization.

= A novel MR image feature extraction technigue is developed to extract the
most relevant features for accurate SR of clinical DW and MRS images us-
ing the morphological component analysis (MCOA) and second order high-pass
filter.

= A global dietionary learning method is proposed wsing the K-singular value de-
composition (K-8VD) technique with the orthogonal matching pursuit (OMP)
algorithm as the sparse coder.

B> A patch-wise sparse reconstruction problem is modeled for HR image recon-
struction; Sparse optimization problem is solved by an efficient spasse coding

method.

> Sparse representation based coupled evercomplete dictionaries are learnt using
DW and MRS images and utilized them to extract a priori HR information
for the reconstructed patches from external datasets,
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& Non-local low-rank based resularization is incorporated in the reconstruction
model to exploit self-similanty of LR pathes from the input image for pre-
serving -sharp edges aud fine details besides smooth regions since MR image
i naturally mumume smooth and contain repetitive patterns throughout the

image. We use it as an additional inlernal prior in the proposed model.

B Proposed a composite sparse reconstruction model consisting of both the reg-
ularizing pricrs- external and internal as mentioned above. Two subproblems
are then solved iteratively by using the alternating direetion method of mulki-
plicrs (ADMM) algorithm, Extensive simulations are carried out with different
clinical DWI and MRSI datasets for different upscale factors and compared

reslts with the state-of-the-art.

k= Implemented the proposed SISH algorithm in a hybrid CPU-GPU environment
for different multi-slice DWI and MRSI datasets to demonstrate its potential

«for parallel implementation.

1.5 Organization of the Report

The rest of this report is organized as follows: in chapter 2, a Sparse Hepresentation
based Super-resolution of MRI Tmages with Non-Local Total Variation Regulariza-
tion is presented. Chapter 3 describes the proposed methodology of Sparse Hep-
resentation over a Learned Owvercomplete Dictionary based Suuer—m_mlul:irm Tech-
pigue for DW and MRS lnages, Chapter 4 describes the proposed methodology of
Diffusion-welghted and Spectroscopic MRI Super-resolution using Sparse Represen-
tations, Finally, & brief conclusion is provided in chaptor 5.



CHAPTER 2

Sparse Representation based Super-resolution
of MR Images with Non-Local Total Vari-
ation Regularization

The performances of sparse representation algorithms for image SR are related to
several phenomenons, like, quality of the dictionary trained, elfectivencss of the
comstraint term selected for regularization, ete. The proposed methed for SR re-
construction from a set of LR MR images is discussedd in the following sections, It
consist of two parts: first, learning of LR and HR dictionaries and second, recon-
struction of HR output image utilizing the learned dietionaries, The reeonstruction
- algorfthm s again can be divided into the following sub-tasks: first, extraction of
high-frequency features of the patches then solving a sparse prior based regulariza-
tion and secondly, a non-local total variation regulanzation to restore the textural
details.remove the undesirable staircase artifact to recover the fine details and tex-
tures. Finally, a global image regularization is done that helps in incorporating
the given LR image's point spread function into the recomstracted HR images by

utilizing the image acquisition model constraint.

2.1 Sparsity based Image Super-resolution

In the beginning, overlapping patches of size k » & are extracted from the mput
LR image Y. The sparse coefficients e corresponding to each low-resolution patch
v is found with respect to the trained dictionaries Iy and Dy, Next, these sparse
coefticients are combined with high-resolution dictionary D to find high-resolution

patches x.
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The salution of the [ollowing sparse regularization problem gives the sparse
coeflicients corresponding to each low-resolution pateh y:

; 2
a" = arg m'ﬂ'l”ﬂh'r-—‘ﬁ”'2 t+ & el (2.1)
i
; De| . |¥ : sz :
whera [ = L= cand A is the regularization parameter. T is the
Ty, w

overlap region extraction operator which finds the region which is common to both
the presently reconstructing patch and the latest HR patch generated: w represents

the overlapped pixels contained in the previously reconstructed HR image.

Following the computation of sparse coefficients o* using Eqn. 2.1, HR patches
r are abtained by solving the following relation which sapports the fact that the HR

and LR dictionaries shares the same sparse representation.

o

. r = Lyt (2.2)

Arranging all the individual HR patches reconstructed by Eqn. 2.2 on a single
grid will vield to an intermediate HR image X, Before finding the initial HR
reconstricted image Xy by the minimization problem, non local total variation reg-
ularization is porformod so that the patches to be reconstructed fit proporly in the
above minimization formulation. Again due to measurement errors, X may not fit
the generalized model, ¥ = WX, where ¥ is the input LR image, X is the desired
HR image and W is the image sampling operator. For overcoming these limitations
due to noise, a global reconstruction constraint is imposed by selving a minimization

problem:
X* = argmin ||WX — ¥[l; + AIX — Xollz (2.3)

The above equation 4 is the gradient descent method., which is minimized iteratively

to And the final reconstructed image Xy
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2.2 NLTV Regularization

The non-local means (NLM) filtering implies the weighted average of the surrounding
pixels within a search window for the computation of the new filtered pixel value,
Two blocks of the HR image Xo having central pixels at x; and &; contributes to
weight a; which is the gaussian distance I; between the blocks [49]. Consider =,
and r; denote the pixel at the center of b, x kb, hlocks and it is assumed that r; lies

in the search window of r;, Weight uy; is computed by:
wy; = expi—||zy — =l 3/ %)/ (2.4

where f and o are controlling parameter and normalization factors, respectively.
The new filtered pixel value is denoted by NLM (x;), and this approach of filter-
ing has lead to a new approach of regulanzation, known as nonlocal regularization.
. Congider all the pixels in the center organized as a column vector, represeoted as ¢
anel arll the weights are also organized as column vector, represented as w. Mathe.

matically, this nonlecal regularization ean be represented as:

3 e —wnillg (2.5)

e

These weights are updated iteratively and before the implementation of gradient
descent method for final reconstruction, the nonlocal total varation (NLTV) regu-

larization is implemented, the formulation of this approach is as:
min ||Dyal| + aflx — Wz (2.6)
'

The selution of the above formulation is the basis of the NLT'V regularization, The
HR image Xj obtained after the regularization is used in equation 4, which undergoes

miinimization iteratively to obtain the final SR image X°*.
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2.3 Dictionary Learning

Two training image patch pairs, set of high-resolution patches is represented by
X" = 1y, T3, ..., 24 and set of low-resolution patches is represented by ¥ = yi. g, o e
These two dictionaries are jointly trained with the condition that both HR and LR
image patches have a common sparse representations among them. A joint sparse
representation regularization can be formulated involving the LR and HR image
patches simultanecusly. Mathematically,

. 3 .1 5 11 .
tin —EIIX"' — Du 2|2 + EII}" — DiZlis + A{E + E]”E”; (2.7)

{0n, 0 Z}

where LR and HR patches in vector form have dimensions § and R respectively.
I1Z1]; is a fy-norm term that enforces sparsity into both the dictionaries. Eqn. 2.7
i solved teratively for three parameters simultansonsly to obtain the HRE and LR

dictionarkes 7y and [y,

2.4 Results and Discussion

Simulations of the propesed work is carried out using MATLAB (R2015b) environ-
ment on PC having configurations as follows; 08- Windows 7, Processor: Intel core
i5 (2.2 GHz), and RAM: 8 GB. The diffusicn-weighted MRI data has heen acquired
from a GE HDx 15T with the following parameters: TR/TE: 4225/76.6 ms; Slice
thickness: 5 mum. spacing between scans: 5 mm; Field of view {FD‘;’:I: LMD = 1O
Flip angle: 90°, The spectroscapic MRI images have also been acquired from a GE
HIx 1.5T with the following parameters: TR/ TE: 150/1.372 ms; Slice thickness: 8
mm; spacing between scans: 5 man; Field of view (FOV}: 100 = 100; Flip angle: 0",
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Table 2.1: Quantitative evaluations of the DW image SR for different methods wsing

upscale 2 and 3

Upseale Factor 2 Upscale Factor 3
Parametets |~ TLRTV | 5¢SR | Propased | BOT | LRIV | S¢8R | Proposed
MSE 28,96 | TRO? | 2249 | 17.79 | 41.36 | 13033 [ 2406 | 16.41
MSSIn 0.574 | (553 | 0.977 | 0.982 | 0.951 | 0872 [ 0.962 | 0.971
PSNR (dB} | 34.40 | 25.12 | 3502 | 36.93 [ 3327 2820 [ 3562 [ 36.98
M 388 | 146 | 3.89 411 2807 401 [ 436 ] 3517

Table 2.2: Quastitutive evaluations of the spoctroscopic image SR for dilferent meth-
el nsing upscale 2 amd 3

Upscale Factor 2

Upscale (actor 3

Paramelers |\ el TLRTV | S8R Proposed | BCL | LETV [ Seb5R | Proposed
MSE 2408 | 4400 | 1432 | 11.66 | 41,36 | 19053 | 2406 | 16.41
MSSTM 0,066 | 0878 | 0.976 | 0.980 | 0.954 | 0.798 | 0.965 | 0.972
PENR (dB) | 3544 | 32.00 | 3701 | 38.92 | 45567 | .29 | 37.73 | SB.67
[ MI 3517 | 2.508 | 3.726 | 3.827 | 8.521 | 2427 | 3661 | 3.780 |

'2.4.1 Simulations

First. the LR dictionary Iy and the HR dictionary [, are trained jointly where both

consist of 512 atoms in each. For training, & number of 1,00,000 LR/HR patch pairs

are selocted from about 30 standard MR images. The regularization parameter for

the dictionary has been considored as A = 0.16. This dictionary has been trained as

per the approach proposed by Yang ef al. |43

Next, for the super-resolution reconstruction, two upscale factors have been
considered, ie., 2 and 3. For both the upscale factors, size of the LR input s
125 % 128. Size of the output HR image iz 256 x 256 and 384 > 384 for upscale

factor 2 and 3 respectively. The results of the proposed method and some other
SR based methods has been given with their magnified view, In Tables 1-2, DWI

results represent the SR results of diffusion-weighted MRI images and MRSI results

represent the SR results of Spectroscopic MR images.
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[nput Bicubie LRTV SeSh I'ropaserd

l-'iguw." 2.1: Results of DW MRI ':|I1.' ||-~ir|;=!. different SR !|'i'||r:i-:|||l'.-u fin I:|.-:-i-:':=|:|' (TR

(XX %

Hicubie LRTYV Sc5R Proposed
Figure 2.2: Magnified view of results of DW bnage SR for npscale factor 2

Lot Bicubic LRTY SelH Proguosed
Figure 2.3: Results of spectroseopic image SR by different techaigues: for upscale

factor 2

Hicakris LRTY ScER Prrogeosed
Figure 2.4: Magnified view of results of spectroscopic image SH for upscale factor 2

Lot Bicuhie LRTV ScelSR Proposaed
Figlln: * 5 Resulta of DWW MR mmaee SH i:-_'.'4|:.I|"|':|.'||r techninges for npseades Fctor
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Imput Bicubic Sc5h Proposed
II‘EH_“]_'{\- 2.7 Iil_"\-"i'"h of |,|3.|-|;'||;:-C|:'|||:.i{: i,|||;n|:_h|' I:"||: b |!1FF|""|"1| |1'|G|‘|-Ili-l|_||'c':"c for |]]'I‘!"|::-'|.I‘.'

foctar &

Bicubie LRTY ScSR Proposid
Figure 2.8: Magnified view of results of Spectroscopic image SR for upseale factor 3

2.4.2 Ewaluations

. The simulation results obtained are cvalunted both visually and quantitatively. In
Figs. -J-H. it is clearly seen that the fine details such as edges have been preserved
efficiently in the proposed method. From Tables 1-2, it can be seen that evaluation
parameters obtained for the proposed method are better in terms of peak signal-tao-
noise ratio (PSNR) as well as mean structural similarity index (MSSIM ) compared
to the traditional bicubic interpolation techniques. The proposed method has also
shown hetter results as compared to ScSR proposed by Yang ef.ol [43] and LETV
proposed in [34]. Compared 1o the ground truth, bi-cuble interpolation, and LETV
methods produce blurry resalts, As far as Sc8R i concerned, it does not prodiuce
blurring artifacts, but in comparison to the proposed method it it does not preserye
prpuivalent edge details. We have compared the image quality using two more metrics
mean-square error { MSE) and mutual information (M1} [B] between the ground truth
and the SR result image. For better image quality, MSE should be less and M1 should
be more. All the images used in the experiments are brain images. The magnifiedd
views of the results clearly show the zoomed view of a specified portion of the results,

It can be seen that fine details are recovered by the proposed method
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2.5 Conclusions

In this chapter, we have shown that the implementation of non-lecal TV regular-
ization for solving the regularization issnes of the sparsity based approach can be
a viable solution to the issues. This combination provides better consistoncy of
patches, thereby giving better results. Quantitative comparisons show that the pro-
posed. method outperforms the existing regularization based approaches, Proposed
methed is computationally expensive due to the iterative process of regularization.
As a future work, this can be extended to multi-core processing for computationally

officiont results.



CHAPTER 3

Sparse Representation over a Learned Over-
complete Dictionary based Super-resolution
Technique for DW and MRS Images

[u this chapter, the development of a spamse representation based MR image 5H al-
gorithm using coupled overcomplete dictionary training along with a non-local total
varkation (NLTV) regularization for obtaining the most stable and accurate output.
The propased MR image SR method is divided into three phases, namely, Feature
Ertraction, Coupled Dictionary Training and 5K Reconstruction, The procedure to

carry out these tasks are explained in the following subsections,

3.1 Feature Extraction

The training dataset X for dictionary learning is collected from sample patches
taken from LR and HR training images. Here, the HR patch vector X, € f™*"
consists of /M < /M size patches extracted directly from some avnilable HR MR
images similar to the LR images, where P is the tatal number of guch patches.
On the other hand, LR patch vector is not directly obtained from LR patches. but
acquired from feature enriched LR patches. This is achieved by first carrving out 4
feature extenction procedure before LR patch formation. In the proposed miet houd
feature extraction is performed using the morphological component analysis (MCA)
reported in [16] and high-pass filtering of first- and secomd-orders, MCA gives texture
and cartoon lavers from the given LR image. For example. as shown in Fig. 3.1,
the separated texture image includes all the high-frequency information, while the

cartoon image just gives the structural overview of the actual image.
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(i) |:-ri|r-;i||.,.| ) cartoxn [ texiure

Figure 3.1: Example of MCA decompesition for texture image extraction [16]

In order to decompose the LR image X, into its texture (X)), and cartoon (X)),
lavers. The MCA obtains sparse representation of each layer by a given dietionary.
The: dictionary is built as a set of dictionarics related to multiscale transforms, such
wavelets, ridgelets, or eurveleta, For textore image 2eparation, the DCT and enrvelet

transforms are chosen which gives better edge description. Mathematically.
xﬂ' = ”‘:-"L T I:K;:II_ e D.l_ﬂl ik D,—&,— I.::L ]:I

where Dy and D, are the dicfionaries for texture and cartoon layers, respectively,
whilé ex, and ex, are the corresponding sparse coefficients vectors, To perform texture
image extraction from a noisy image, Bq. 3.1 is modeled as a basis pursuit |BP)
based regolarization problem, where the decomposition perforins approximation of
the image layvers, leaving some error to be absorbed by content that is not represented
well by both dictionaries. Moreover, another penalty term based on total varistion
(TV) i added into the unconstrained regularization problem to recover smooth
targets with sharp edges trom the cartoon image, The overall decomposition problem

is mathematically expressed as Follows:

(e, o™} = arg min [log||, + ||l +
{mg, o} IEI!.E]'

M Xy - Dy — Do |f; + ATV {Dyax.}
The abowve optimization problem is solved using the block-coordinate-relaxation
method [4]. In the proposed method., the texture component, (X, ), will be consid-
ered for LR dictionary training as it mainly contains the high-frequency aftributes.
Furthermore, we apply four 1-1 derivative filters of orders 1 and 2 as reported in [43]

on (X}, for extracting the horizontal and vertical features [or dictionary training.
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The filtered outputs give rise to four separate gradient maps.

Next, we select patches from these gradient maps for learning the LR dictionary,
For each patch index (depending on the number of overlapping pixels, the total
number of indices will vary), we obtain four feature patches, one from each of the
gradient map. These four feature patches are then coneatenated to form the single
feature vevtor of dimension 4m x 1 . The provess is repeated for remaining patch

locations as well. In this way, we build a training dataset of size dm x F for the LR

dictionary.

3.2 Coupled Dictionary Training

The feature extraction stage makes the sparse representation mom vffective by con-
_ sidering only the high-frequency information confained the LR image and avoid-
ing 3.1:|:,.' redundant content, Now, a jeint sparse regularization problem is Bormu-
lated to learn the coupled overcomplete dictionary De from the combined dataset
X = [I,, € B™F X i € .‘H‘“'”’l. Assiming a common sparse coding ved-
tor Z from both HR and LR feature patches, the joint dictionary training may be
fortulated as the following minimization problem [42]:

¥ faatnire |

1 1 R |
|1unziﬁ|i]{;, - D22 + F”E‘ ~ D:Z|F Myt §]|[z||.: (3.3)

Dy By,

where R and S represent dimensions of HR and LR feature patches in vector form,
and A represents the regularization parameter. Above problem may also be simplified
by formulating an equivalent problem of learning a combined dictionary ie. the

coupled dictionary Do = [Dy; Dy as follows:

.
R
Eq. 3.4 ean be solved by using the K-8VD [1] algorithm. A pictorial representation

1
1 —D-Z|B it :
{gtgjé}llﬂc DeZllz + M5 + g2l {3.4)

of tha nranneed seonlad dictinnary frainine sechpme e dhowm in Fie 41
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Figurae 3.2: Proposcd dictionary training method

3.3 Sparsity and NLTV regularization based SR

Image Reconstruction

Sparsity Regularization
In reconstruction phase, MCA decomposition is first applied on the test LR image Y
to get its texture and structure {cartoon) components, Y, and Y., respectively. Y,

is then upscaled by bicubie interpolation and feature patches are extracted from it

. These LR feature patches are used lor sparse reconstruction of their corresponding

HR patches. Mathematically, the patchwise sparse representation problem using
interpolated LR feature patches is given hy:

= ]
& = argmin |§}r —D:t||2+}-.1||ﬂ||1‘ (3.5)
(=]

where ¥ = [ ] T is an operator that extracts the region of over-
Ty

lap betwesen ﬂ'rE current. recomstrueted patch with the most recently reconstructed
HR patch, while w representing the overlapped pixels, and A, s the regularization
parameter, Eq. 3.5 is a convex optimization problem, which is efficiently solved by
the sparse coding algorithm [26] that gives superior performance over classical £,-

minimization tools. Next, the corresponding HR patehes x are obtained as follows:
x = Dydk. [3.6]

After obtaining all the HR patches as above, they are stitched together to form
an approximate full texture image X, which is added to the bicubic interpelated
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cartoon component X to obtain the intermediate HR image X",

NLTV Regularization
The non-loeal means (MLM) filtering implies the weighted average of the surround-
ing pixels within a search window for the computation of the new filtered pixel value.
Two hlocks of the HR image X" having central pixels at r; and r; contributes to
welght iz, which is the Gaussian distance or the fy-norm distance between the two
blocks [49]. Comsider x, and &; denote the pixels at the center of b, x b, blocks:
x; , %, and it is assumed that &; lies in the search window of . Weight ny; is
computed by

gy = exp{=ix; — x| 2/ /e, (3.7)

where f and & sare controlling parameter and normalization factors, respectively,
The new filtered pixel value is denoted by NLM (x;), and this approach of filtering
has lead to a new appi*n:m-:h of regularization, known as nonloeal regularization.
" Conshler all the pixels around #; within the search window organized as o column
vector, represented as r, and corresponding weights organized as column vector,
represented as w,, Mathematically, this nonlocal regularization can be represented
asl

5 e — w3, (3.8)

TEx

These weights are updated iteratively and before the implementation of gradient
descent method for final reconstruction, the nonleeal total variation (NLTV) regu-

larization is implemented, the formulation of this approsch s as:
i TV(X") + d|[X®* - WX3, (3.0

where A; is the regularization parameter. The solution of the above formulation is

the hasis of the NLTV regularization. The HR image X" obtamed after the NLTV

regularization is used to reconstruct the final SR image X*.

T avoid the pateh inconsistency problem and to satisfy the image acquisition

model, 4 back-projection step s carried out by imposing a global reconstruction
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constraint as follows:
X' = H.rp;ltﬂu ISHX - Y| + X||X - }E“||§, (3.10)

where Ay is the regulasization parameter. Above equation is the least-square problem
having a closed form solution and solved by the gradient descent algorithm. We

sumimarize the proposed algorithmic steps in Algorithm 1.

Algorithm 1 : Super-resolution Reconstruction
Input: input image Y, dictionaries Dy and Dy,
1: MCA decomposition: Y — Y., Y,
2 ?{“h’ <= Bicubic interpolation of Y.
3. for each /m % /m patch y, in ¥, do

4 ri o+ patch indexes in s-dimension

5 gy pateh indexes in g-dimension

: for (int oo =U0;a7 < rows;xx™ ') do
T for (int yy =10, gy < cols, ™) do
= o = u:in”l]-n - |3 + Mlex||y
o . end for

1 endfor

141 for each HR patch x;, do

12 ]{h 4 Dhﬂ.":

14: end for

14: end for

16: for intenmediate HR image do

16 X? = 2" 4 XU

17: end for

18: TV regularization: NLTV {X"}

19: for (inf ¢ = [ ¢ < (maxlter|;7 + +) do X
w,  X*=arg min [SHX - Y3+ AlX - X"
21 end for

Output: super-rosolvod imagoe X°

3.4 Results And Discussion

The detailed experimental setup and simulations carried ont In this work are dis-

cussed in following.
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3.4.1 Simulation Setup

Database Preparation

Two types of clinical MR images are collected from two local Hospitals, namely,
Apolla Hospitals, Guwahati and GNRC, Six mile, Guwahati. First, the DW images
are acquired nsing scanners GE 1.5 T SIGNA Explorer with following parameter
settings: scanning sequence: GR, matnix size: 256x256, TR/TE: 47.5 msec./ 2.6
msec.. slice thickness: 5 mm, no. of averages: 1, and GE 1.5 T SIGNA HD=t
with scanning sequence: EP/SE, matrix size: 256 256, TR/TE: 4225 msec./ 77.9
miser.. slice thickness: 5 mm, no. of averages: 2. On the other hand MRS images
are acquired using a GE 1.5 T SIGNA Explorer with following parameter settings:
seanning dsequence: EP/SE. matrix size: 266 =256, TR,/TE: 4313 msec. /85.2 nuee.,

slice thickness: 5 mm, no, of averages: 1.

 For dietionary r.ra.inling;, we prepare two separate databases for DW and MRS

imazes, each consisting of 25-35 high quality images. Experiments are conducted
assuming these images as representatives of some HR images, corresponding LR ver-
sions are obtained by blurring and downsampling operations as discussed in Section
1. On the other hand, for testing of the proposed algorithm, two sample DW and
MRS images are considered, which are not included in the training database.

Simulation Environment

All simulations are carried out in the MATLARB (R2017a) environment on a worksta-
tion having specifications as follows: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHe,
2901 MHz and 12 Cores; GPGPU: NVIDIA Quadro PS000 with 16 GB GDDR5X

memory and 2560 CUDA cores.

Evaluation Parameters

Four reference based quantitative metrics are considered for the performance eval-
uation of SR reconstructed images using the proposed algorithm. They are, peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity

FEEIN =gl and maedanl iabaewiatiam (RATY [l i ki wadon AF DENT and QSQINT
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indicates better reconstruction quality, FSIM is specially used for MRI iimages that
quantifies local image quality through gradient magnitude similarity calculation and
falls in- the range [0, 1]. Similarly, MI is a measure of the degree of statistical depen-
dence between two random variables, Both FSTM and M increase for better irmage

quality.

3.4.2 Simulations

Dictionary Training

In this experiment, two pair of conpled overcomplete dictionaries are trained, both

for MRSI and DWI images by wing K-SVD based learning approach [1]. First,

100000 number of HR and LR sample patch-pairs are prepared from the training

dutasets. Next, to assure that most significant feature patehes are selected in the
training patch vector, ':;.ln apply a pruning operation on it where the patches with

a less variance is discarded. This in turn produce a final training dataset with the

most significant pateh-pairs for dictionary leaming,

As depicted in Fig. 4.1, the HR dictionary is trained on the HR image patches
while the LR dictionary is trained on features extracted from the LR training images.
In this expariment, for SR by factor 2 hoth LR and HR pateh size 15 considered as
Gxh. A dictionary with 256 atoms is learnt with each atom having a sige of 23x1
for Iy, and 100x 1 for the I}, On the other hand, for SR b factar 3, the LR image
is first upscaled by 2 using bicubic interpolation and then 6x6 (which is 2 times
the original 3x3 LR patch) LR patches are extracted with 1 pixel overlap. The
corresponding HR patches are of size 9x9 having 3 pixel overlaps. Consequently,
for upscaling by 3, the Dy, and Dy are of sizes 81 %256 and 144 =256, respectively.

Results
In this work, four MR images, namely, MRSI1 {resolution: 424 = 360), MRSI2
(resclution: 465 » 300), DWI1 (resolution: 172 x 142) and DWI2 {resclution: 189 x
153) are taken as the original HR images. Then a LR test image is generated from
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ife) DWT HR [« DWI LR

Figure 3.3: HR and LR dictionary images trained fromn MES] and DWI tradndng
datasels respectively

each of them by applying blurring and downsampling operations. We use a Ganssian
blur kernel of size 5 5 and standard deviation value o = 0.5, For MRSI1 and DWT1,
the downsampling ratio is 2 while that of MRSI2 and DWI2 is 3. 5o, LR image sizes
for MRSI1, MRSI2, DWI1 and DWI2 become 212 x 180, 155 = 130, 172 x 142 and

i3 x 51, respectively.

Simulation results are evaluated both viswally and quantitatively on DW and
MRS images for different upscale ratios, Tables 1-2 show evaluation of different
performance metrics for different state-of-the-art SR methods along with the pro-
possd method. It can be seen that the proposed method outperforms both in terms
of PSNR as well as SSIM compared to others. The proposed method has shown
better results as compared to the ScSR proposed by Yang et.al [43], LRTV [35]
and JRSR [10]. In terms of PSNR, the proposed method, on an average, ahinws
an improvement of approximately 2 dB than SCSR for 2x zooming of a test MRS
image, while the same is approximately (0.8 dB for 3x zooming for another test MRS

image. When compared to the JRSR, the proposed method on an average shows

r = ] 4 = TTw P - . ioem i - 1
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Table 3.1: Quantitative paramwters resulied by different methods from two MRS
% test Images using sooming value 2 and 3, respectively
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4 dB for 3x zooming for the two test images, respectively. In case of DW images,
quite similar improvements are also observed in terms of PSNR for the proposed
method than the SUSR, However, for the DW test images, the proposed method
not only outperforms the JRSR, but corresponding improvements are even better
a5 compared to those for the MRS test images. This may be probably due ta the
fact that the proposed sparse reconstruction method is applied cnly on the textore
layers, which have signiticant high-frequency features. Similar observations are also
made in case of the proposed method in terms of M3SIM and other parametens,
when compared to others. From Figs. 3.4-3.11, it is clearly seen that the fine de
- tails such as edges and textures have been preserved better in case of the proposed
- method. The magnified views of a specified portion of the visual results show that

- fine details have heen recovered well by the proposed method.
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Figure 3.11: Magnified view comparison for DW second test image results by dil-
feremt methods and upscale ratio 3
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upscale ratio 2
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Fig. 3.12 shows the central row profile compearison of result images produced by
different SR methods. It is a plot of pixel values across a line in the image that is
the central horizontal line, and it is used to compare the pixel-wise accuracy of the
different reconstruction technigues. It can be observed that the proposed method

gives the most closest profile to that of the original inage’s profile,
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3.5 Conclusions

This chapter demonstrates that the SISR algorithm based on the sparsity over
learned overcomplete dictionary along with a non-local TV regularization provides
consistent SR outputs for clinical DW and MRS images at different upscale rafios.
Simulation results prove that the proposed method is able to outperform other ex-
Jisting regularization based SR methods hoth in terms of visual and quantitative
results. In terms of computational time, the proposed method is somewhal expen-
sive due to the iterative prooess in the regularization techniques, Multicore parallel
processing or general purpose graphics processing units (GP-GPUs) may be an al-
ternative choice for the efficient implementation of this method to achieve clinically
feasible performance. Research works are already in progress in this direction for

real-time implementations.



(CHAPTER 4

Diffusion-weighted and Spectroscopic MRI
Super-resolution using Sparse Representa-
tions

In this chapter, we adopt a similar model as in Eq.(1.2) with an additional regulariza-
tion term based on NLR for the SR of DW and MRS images. The proposed a novel
sparse representation model based on sparsity priors using external HR datasets as
well as non-local self-similarity of LR inpat to enhance spatial resolution of DW and
MRS images and implemented the proposed algorithm in & general purpose graphics
processing unit {GP-GPU) and CPU environment to achieve clinical relevance. The
pmpl:rmu:l method carries out SR is discussed in the lollowing sections, [t consist of
four main stages: Dictionary Training, Feature Extraction, Joint Sparse Coding and

the 58 Reconstruction.

4.1 Dictionary Training

Two overcomplete dictionarics (low (Te) - and high-resclution (T ). respectively)
are to be invoked during the training process; one supposed to reptesent the low
resolution patches and the other high resolution patches, Training is carrbed oot
using an external image dataset of already available goud quality MR images, which
may be assumed as available HR images not related to test images. Dictionaries are
to he leamnt jointly in ovder to preserve compatibility of HR patches to be gener-
ated during the iterative patch reconstruction proeess with their neighbors. During
the training, a joint sparse representation problem is solved iteratively iwolving a
joint or coupled overcomplete dictionary, T, = (T Ty ). which yields a single sparse

rrvd i narkor aecimming that loee and hirhoraealistiog ssatchoe chare & nviona ranrea
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sentation, After every iteration, the atoms of the joint dictionary are npdated with
the current sparse solution, A schematic representation of the dictionary training

process using sparse representation is shown in Fig. 4.1

HR Sample Paich Extmction HE. Patches
Inages (X) Bt
g Coupled
SEHI ol Coding =
1_ (5
LE Featurz
Crenerated LE .
— ) Feature Exiraction STy

Figure 4.1: Coupled dictionary training

We extract both HIt and LR patch vectors, x and y, respectively from the HR
training dataset, Note that pateh vectors x are extracted directly from the HR
training dataset while the feature patch vectors y are extracted from the blurred

- and downsampled version of sample HR images.

4.1.1 Feature Extraction

Since LR image patches are used for sparse representation, it is important to miake
them more favorable candidates for sparse representation by removing redundant
low-frequency information present in them. To achiese this, the LR image is passod
through a fealure extraction step that provides the available high-frequency informa-
tion in it. As reported by Yang ef al. [43], we extract gradient features by applying
four 1-D derivative filters of orders 1 and 2, for finding the horlzontal and vertical

features, eg. edges, contours, etc.

We obtain four gradient maps after applyving these 1D filters separately on each
LR image. Now, corresponding to each feature position, we obtain four feature
patches, one from each gradient map, and finally concatenate them as a single vector
after vectorizing each patches. This vields LR feature vectors: Y which ix given as

Y* = {¥1.¥2 . .-, ¥x} corresponding to k& HR patch vectors: X* = 31,90, 00 0y X}
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In this process of feature extraction for LR patches also bears information of its
neighbarhood, essential for accurate HR mmage reconstruction.

4.1.2 Joint Sparse Coding

Low- and high-resolution dictionaries: Ty and T are jointly trained so that sparse
coding vector for HR and LR patches is the same. We concatenate HR patch vectors,
X% and LR feature vectors, ¥ into a single vector X,. Then a sparse representation
problem is formulated using the joint dictionary T, and X, for dictionary learning.

Mathematically,
i X = Tl + AL+
(i [|Xe — TeAll; 4 A[p. +q,]||:-i||h (4.1)

] xﬁ. LT}I

where X, = ?F s I ﬁ_‘T
: i Vi

coefficient vectors of corresponding image patches, Le. A = {0y, 09,..., a0} Here,

., and columns of A contain sparse

p and q-'l are the lengths of x and y, respectively. Fq. 4.1 18 the standard basis pursuit
problem, which is efficiently solved using the foaturesign search based approach [25].

4.2 SR Image Reconstruction

The proposed SISR model modifies Eq. 1.2 to include both the external and internal
4 priori information as its regularizing terms during the iterative reconstruction of
the desired SR output from a given LE MR image. Thus. a new model may be

defined as follows:

X = arg min ||SHX - Y”g + 0 T parmiey () + ApWpen (X, {4.2)
X

where Ay and A; sre two regularization parameters and the second term is to impose

sparsity of the input image over an lmage transform or a learned overcomplete

wr - TR ] T P - Fam ™ el F 1 - [ rw T



DW and MRS hnages Super-resolution using Sparse Representadions

patches in an iterative manner such that the reconstreuted HR patches maintain a
close similarity with their neighbors, which may be reproduced here as follows:

. a2
Uity (X) = 3 4 [ = e+ Al (4.
= RTI = ¥ T b
where T = ' ¥ = . ¥:; = R (SHX) is the i** LR feature
PT, Aw

pateh extracted using operator | and w represents pixel values from the previously
reconstructed HR image on the overlap, extracted using operator F. Similarly,
the third term in Eq. 4.2 is another regularication term that exploits the non-local

self-similarity through non-local rank minimization and defined as follows:

Unin(X) = E-Jj'lf'jx—l-j||§+"r Rank({L,), (4.4)
4
. where I'; is a patch extraction operator that extracts patches for the j search

window from X.

Eq. 1.2 is & composite regularization problem and may be solved by using the
concept of variable splitting technique [12, Chapter 3], The main problem is split
into three simpler sub-problems with respect to variables o, L and X, respectively.

We now define thom as fallows:

= z
& = agmin’y_ (% ||;,r —Tr:!:,”J + Bllelly, (4.58)
f. = argmin¥ (1 |T,X - L[ + v Rank(L,)), : (4.5h)
L ¥

X = argmin ! [SH(X) - Y[+ 203 (3||R (SH(X)) - R Taxi[3)
X

23 (3 I0X ~ Lil), (4.5)

I
where R is the patch extraction operator. First subproblem is solved by the feature-
sign search algarithm as done by [13, 43], Next subproblem is a low-rank minimiza-

tion problem and can be solved efficiently using the singular value decomposition

famrT ' ) ] LI Fawm wmwel N Ui ] r L R ] r i § i
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their results are inserted in the third subproblem. This leaves the third subproblem
it a form of simple least-square minimization problem, whese close form solution
can be obtained by differentiating it w.r.t. X. We term it as the Sparse Representa-
tion and non-local low-rank regularization (SRNLR) algorithm. Algorithmic steps
of SRNLR are summarized in Algorithm 2. The initial HR image X" is obtained

Algorithm 2 SRNLR Reconstruction algorithm

i: Input: ¥, 5. HAR I, T

2. Initialization: & —0, =« 107, X" &, + M. Mo
4. while not  converge do

& he—k41

2
5 of e angminy (; [R(SHX)) - Ta”) + e
B LY+~ EIII!,EI.iI:I B eSS Lg|ls 4+ Rank(L;)]
E

(SHPY 4+ L {RSH ) T oo +Ag 5 T‘;_.'L.
] i

T XF

[EHISH+N T (RESHY EEH+A T I

4.  check muvergenwl_-: |X* — J{""'JH,I’ |§J{*|| £
% end while
1k Output: X* +— X*

using bicubic interpolation of the LR input image Y.

4.3 Results And Discussion

4.3.1 Database Preparation

Diatabases of DWW and MRS images are acquired from MRI scanners installed in two
local Hospitals, namely, Apolio Hospitals, Guwahati and GNRC, Guwahati Six mile.
DW images are acquired using scanners- GE 1.5 T SIGNA Explorer with following
parameter settings: scanning sequence: GR, matrix sire: 256 x 206, TR/TE: 47.5
msec,/ 2.6 msec., slice thickness: 5 mm, no. of averages: 1, and GE 1.5 T SIGRA
HDxt with scanning sequence: EP/SE, matrix skee: 256 x 256, TR/TE: 4225 msec. /
77.0 mesec.. slice thickness: 5 mm, no. of averages: 2. On the other hand MRS

images are scquired using a GE 1.5 T SIGNA Explorer with following parameter
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settings: scanning sequence: EP/SE, matrix size: 256 = 256, TR/TE: 4313 msec./

85,2 maec,, slice thickness: b mm, no. of averages: |

Dictionaries are trained for DW and MRS images soparately. In each case
training is done using 30-40, 256 x 256 brain images of axial, coronal, and sagittal
crosg sections.  These lmages are solected sich that 1|‘Il".'.' oontain r-'igllif]l'-l-lﬁ fen
tures, like edges, textures in them. Training is to be performed using prototype
signals, which are extracted as overlapping patches from the selected datasets. A
few sample images for training are shown in Fig. 4.2. We produce corresponding
LR versions of training images in our simulations by applying blurring and down-
sampling operations on high quality images. [n order to display the performance ol
SR reconstruction of the proposed method, a pair of test images, Test 1 and lest 2
are shown in Fig, 4.3 from each of the DW and MRS datasets, respectively which

ATC 1'|:'|'|.r|;':-u;'|1t;|1 wes of our :1'|-'-.'v|-r.|.r other togt i]llii,,L"l:‘H.

L) et (b} D=t

Figure 4.3: Test images: MRS (left) and W (right] images



DW and MRS Images Super-resclution using Sparse Representations

4.3.2 Simulation Environment

Simulations are carried out in MATLAB environment on a workstation having spec-
ifications as follows: Intel(R} Xeon{R) CPU E5-2650 v4 @ 2.20 GH=, 2201 MH=
and 12 Cores; GPGPU: NVIDIA Quadro PROM with 16 GB GDDR5X memory and
2560 CUDA cores.

4.3.3 Simulation Hesults

In this work, experiments are conducted to perform SR of DW and MRS images
by different upscale ratios. LR images are first obtained by downsampling selected
high quality MR mnages by a factor equal to the upscale ratie. The blurring in the
penerated LR image is done 1.nr applying a Gaussian low-pass filter (LP'F) with kernel
size 5 and & = 1.5 for downsampling by }. Similarly, for downsampling by 1 these
parameters are fixed at 7 and 16, respectively. We neglect the additive noise term
in Eq. 1.1 while producing the LR MR image as the SR reconstruction by sparse
regularization technique implicitly removes any additive noise during the iterative
recomstruction process. Now, for joint dictionary learning, we extract over 1,000,000
LR/HR patch pairs from each of the training datasets separately, Le. DW and MRS,
considering & patch size of 5=5 with twa pixels overlap between two adjacent patches.
To test the reconstruction performances, dictionaries of different mumber of atoms,
ng- 256, 512, 1024 and 2048 are trained. It is observed that computational time
for dictionary learning increases deastically as number of atoms increases beyond
512 with no significant improvements in terms of 3R reconstruction. Therefore, we

eonduct our experiments with a fixed dictionary size of 512 for optimal performance,

Five parameters have been used for quantitatiive evaluations of the reconstructed
images with reference to the ground truth. Besides the commonly wsed evalua-
tion metrics like, signal-to-noise ratio (SNR) and mean structural similarity index
(MSSIM), & few other MR image evaluation parameiers are also considered for fair
comparisons. They are as follows: mutual information (MI) [7]: it 15 a measure of
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the degree of statistical dependence between two random variables: feature similar-
ity index measare (FSIM) [51]: it is based on measuring phase congruency (PC)
and gradient magnitude (GM) while characterizing local image quality, and gra-
dicnt mu.gni.tudt: similarity deviation (GMSD) [41]: it is based on exploring global
variation of pradient based local quality map for overall image quality prediction.
For a better SR reconstruction, the values of SNR, MSSIM, MI, FSIM should be
high, and GMSD should be small. As in real-workd applications or in clinical prac-
tice, there will be no ground truth as such, so in sddition to the reference based
metries, we apply a no-reference baged metric for evaluation of SR outputs without
any bias. A widely used no-reference parameter for evaluation of SH reconstriction
is the natural image guality evaluator (NIQE) [17]. which measures image quality
by calculating the input image's local statistics. A smaller NIQE value indicates a

better image quality.

To compare the performance of the proposed algorithm with state-of-the-art
methods, we have considered six different methods including two most recent algo-
rithms, namely, the CRNS [11] and the JRSRK [10], reported in 2018,

MRS Image SR

SR reconstructions for Test 1 are shown in Figs. 4.4-4.5 for upscale ratios of 2 and
4, tespectively. For visual comparisons of reconstracted images, a small portion of
the SR output is also selected and zoomed in for better identifications of the details.
It can be observed that the proposed method gives better visual representation of
the reconstructed image with enhaneed edge information compared to the state-of-
the-art. Besides visual analysis, validation of the results are also done with different
abjective measures, which are used in the SR literature and shown in Table 4.1. 1t
can be observed that the proposed method outperforms other methods in terms of
all the parameters. An average improverent of about 3,27 B and 1.14 dB in SNR
are achieved by the proposed method over the CRNS method for 2 and 4 times
upscaling, respectively, Similarly, an improvement of 3 dB and 0.73 dB in SNR are
achieved, respectively compared to the JRSR. It can be observed that the JRSR per-

Frome Fattes ihan tha MRS far hichar saosing fartnme Sienthoant imnenreamants
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are also observed in terms of MSSIM and other parameters in case of the proposed
method. We infer that in case of MRS image SR, the proposed method is proved to
be much more effective than recent SR methods.

DW Image SR

Visuals of reconstructed images by different algorithms for the Test 2 image are pre-
sented in Figs. 4.6- 4.7 for upscale ratlos of 2 and 4, respectively. We olwserve thal
the proposed method gives the best representation of details in the reconstructed
images than its counterparts. It 18 seen that hicubic introduces significant hlurring
in the output image, similar is the case for EDL In comparison to the JRSR and
CRNS, the proposed method provides less smoothing and better preservation of
edges. Next, quantitative evaluations are also carried out for all the methods asiog
the same parameters as discussed above. As shown in Table 4.2, for the proposed
method, on an average SNR. is 0.92 dB more compared to the CRNS for an upscale
raticof 2, w:hill?. the it 15 1.74 dB more in case of upscale ratio of 4. However, JRSR
is found to work better than CRNS in case higher zooming factors. We observe an
average improvement of 0.71 dB in case of the proposed method than the JRSR for
an upsealing by 4. Improvements are also observed in case of the proposed method
in terms of other quantitative parameters- MSSIM, FSIM. etc. This conforms to

our findings during the visual analysis,

Table 4.3 shows NIGE values using different zeoming factors for state-of-the-art
methods. It is observed that cutputs of the proposed method are more eloser Lo
the original in terms of NIQE, which clearly states the proposed mefhod is able to
restore Bine details and other structures better than CRNS and JHSH. Similar is
the observation for the proposed method when compared to SeSR except at 4 times
upscaling of MRS image. For higher zooming factors, NIQE also increases, indicating
that reconstruction quality degrades with the increase in upscaling factors, which is

natural.

From the analysis of results for MRS and DW images as discussed above, we

conclude that the proposed method proves to be very efficient in preserving sharp
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eclges and structural details, This is the major objective of any SR method as human
eves are more sensitive to these details, which is being fulfilled by the proposed
method very effectively. This is further corroborated by corresponding error images

shown in Fig 4.5,

(e Se5R (M CHNS (i) JREHR h) Proposod

Figure 4.4; SR rosults of Test 1 by using different techniques for upscals factor 2

k-fold Validation

Experiments are conducted using & database of 25 images for 5-fold eross-validation
in order to remove any bias of the leamned dictionary model towards a particolar
dataset during reconstruction. LR images of & given fold is upscaled using the
proposed method where the regquired dictionary is trained using the HR images of the
remaining folds. In this manner, the experiment iz repeatad 5 times by considering
different groups containing 5 test and 20 training images. Validation has been done
by computing different quantitative evaluation metrics for the resulted images for
all the test images. An average of five different values obtained from the five folds
of & quantitative evaluation metrie is considered as the best possible value of that
metrie and reported in Table 4.4 for different methods. Results show the superiority

of the proposed method
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(al In- b1 Bicuhir

(u] SchH 1] CHNS (gl JIisH (1) Proposed

Figure 4.6: SH remlts of Test | by aging different teehmiques for upscale factor 4

(e] SeSH i Il;; i JEEH {hi | 'r:|||-'-m-:|

Figure 4.6: SR results of Test 2 by wsing different techndgies for upscale factor 2
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(a] ScSh F1 CRNY ig) JTLSH [h] Fropmmed

Figure 4.7: 5K results of Test 2 by using diffcrent. technoiques for upscale factor 4
A : | I

Ial Bieohis L) LY el EDI (o] &SR (o} CRNS (M IRSI (&) Propessl
k) Bicuhis } I ATV EDT k1 Scsid l:]r\.'- lieid JHSE In P
roesisil

Figure 4.8: Error images between original and reconstrocted images: first row {a-g
shows resulis for Test 1 by 2 times; second row {h-n| shows the results for Test 2 by

| times.
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4.3.4 Comparison of Computational Time

Computational time (in seconds) required for sequential implementation of different
SISR methods for .m-;:umlng factors of 2 and 4 are gshown graphically in Fig. 4.10. In
this case, the target HR image is of size 256 % 256 and the input LIV images are of size
128x 128 and 64 x 64, respectively, We observe that sequential implementation of the
proposed method takes more time compared to the JRSR but less than the CRNS. In
order to improve the computational time, we also implement the proposed algorithm
uging CUDA Mex in MATLAR and GP-GPU, which will be diseussed later,

4.3.5 Simulations with Synthetic Image

In order to get an idea of the performance of the proposed method for real-world
appl'gpmi-:-ns without HR ground-truth images, we consider a synthetic image avail-
able in MATLAB. Overcomplete dictionaries are learnt from a dataset of phantom
images taken from the internet. For reconstruction, we consider 128 x 128 synthetic
image as LR image then its SR outputs are obtained vsing the proposed method for
zooming factors 2, 4, and 8. Synthetic images of dimensions equal to those of SH out-
puts as described above are also generated using the MATLAB program for visnal
comparisons. Fig. 4.9 shows SR outputs for different zooming factors along with
correspoirding values of SNH. Hesults indicate that the proposed method is able
to zoom the synthetic imago for any dimension and still maintain the stractural

conformity with their LR counterparts and could preserve sharp edgés acourately.

4.3.6 Parallel Implementation in CPU-GPU Environment

Sequential execution of the proposed algorithm consumes large time as it requires
to solve two subproblems iteratively, namely, gparse optimization and the non-loeal
similarity based regularizations, iteratively, Moreover, these subproblems are solved

patch wise, Further, ¢linical DW and MRS images contain a oumber of slices,
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which further blows up the dimensionality of the SR problem. Hence, sequential
implementation of the proposed algorithm will not be applicable in real medical ap-
plications, Therefore, in this work, an implementation framework using both CPU
and general purpose graphics processing unit (GPGPU] is utilized to speed up the

ewverall algorithm Computationally expensive operations, like patch-wise

[a] [l ; [ {cl]
Figure 4.9: Visual results with & synthetic inage using the proposed method: (a)
input 1283 128 (b) upscale 2 (266 x 256), SNR value: 17.39dB (o) upscabe 4 (5122 514),
SNR value: 16.72 dB and (d) opseale 8 (1024 = 1024), SNR value: 13.54 dB

Table 4.1: Referonere based porformance evaluation for Lest 1
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operations within sparse optimization are implemented using CUDA mex and rest

are implemented using C-++ mex in MATLAB environment. Begides, we also use
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Table 4.3: No-reference based performance evaluation on test images interms of
SNE (dB) for different up=cale factors

Image | Upscale | SeSR | CRNS | JRSR | Proposed | Original
Tost 1 e 19.52 A 22.05 13_3[] 17.15
4 2816 100 a44.38 33.54 17,15
Test 2 2 26,50 20,03 20651 2451 2377
) 4 41,22 .43 A7.36 205,92 2377
Table 4.4: b-fold salidation for S0 reconstroaction
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Table 4.5: Comparison with a deep learning based approach in terms SNI and
MSSIN
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Table 4.6: Sequential and paralle] implementation time for SE of multi-slice MRI
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Figure 4.10: Comparison of Computational Time
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parallel pool from MATLAR parallel computing toolbox for multi-core execution for
a complete MBI dataset. Comparisons of computational times for both sequential
and parallel implementations using clinical DW and MRS images are shown in Ta-
ble 4.6. On an average, a speed-up (sequential to parallel time ratio) of about 16-20
Limes is achieved by the proposed CPU-GPGPU based paralle] implementation.

4.3.7 Comparison with Deep Learning based Approach

For comparison with the deep learning-based approach, we have considered one of
the well known deep learning-based SISR methods, namely, the super-resolution
using very deep convolutional networks (VDSR) [24]. The VDSHR network consists
of 20-layers, and it takes 3 to 7 hours for training, whereas methods, like the SRCNN
[14] consists of 3 layers Elmd takes several days for training, One more key advantage

of VDSH is that ane ean train it for molti-scale modeling i.e.. the same network works
for multiple scale factors after training. Separate datascts of MRS and DW images,
consisting of 33 and 45 images, respectively are used for training with networks
parameter settings as done in |24 A quantitative comparison with the proposed
method using both test images for different scale factors are shown in Table 4.5,
We can observe that the proposed method gives better performance in all cases,
irrespective of the scale factor, and images.

4.4 Conclusions

We demonstrate a novel SISE method using sparse reconstruction based on image
sparsity and non-local self similarity, Extraction of prior information both external
and internal is proved to be very efficient in preserving detailed information in
super-resolved clinical DW and MRS images. Visual and quantitative COMPATISOns
with state-of-the-art SR methods bave demonstrated the superiority of the proposed
method. It is validated both for real MR and synthetic images; found its potential

- o) e “ R —— EE}
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of GP-GPU hardware to get computationally efficient results, makes the proposed
algorithm not only highly effective but alse practically deable.



CHAPTER 5

Conclusions and Future Research Work

Present project report investigates a development of parallel processing etnbwedide]

hardware for super-resslution of diffugion weighted and spectroscopic magnetic res-

CHIANCE IMAEES.

Chapter 1 discusses the short introduction and the clinical relevance of diffusion-
weighted imaging (DWI) and spectroscopic magnetic resonance imaging (MRSI),
This chapter also presents related work on sparse representation based MR image

super-resolution technigques. The limitations of DWI and MRSI is discussed along

- with challenges faced in this images.

In Chapter 2, we bhave shown that the implementation of pon-local TV rog-
ularization for solving the regularization issues of the sparsity based approach can
be a viablo solution to the issues. This combination provides better consistency of
patches, therehy giving hetter results. Quantitative comparisons show that the pro-
posed method ountperforms the existing regularization based approaches. Proposed

method is computationally expensive due to the iterative process of regularization.

In Chapter 3, we aim to develop a sparse representation hased SISI algorithm
basod on the sparsity over learned overcomplete dictionary along with a non-local
TV regularization provides consistent SR outputs for elmical DW and MRS images
at different upscale ratios. Simulation results prove that the proposed method is
able to outperform other existing regularization based SR methods both in terms
of visual and quantitative results. In terms of computational time, the proposed
method is somewhat expensive dne to the iterative process in the regularization
techniques. Multicore parallel processing or general purpese graphics processing
units (GP-GPUs) may be an alternative choiee for the efficient implementation of



this method to achieve clinically feasible performance,

In Chapter 4, we present & novel SISR method using sparse reconstruction
based on image sparsity and non-local self similarity, Extraction of prior informa-
tiom hoth external and internal is proved to be very efficient in preserving detailed
information in super-resolved clinical DW and MRS images. Visual and quantitative
comparisons with state-of-the-art SR methods have demonstrated the superiority of
the proposed method. It is validated both for real MR and synthetic images; found
its potential (o preserve fine details and structures at different upscaling ratics. Fi-
nally, use of GP-GPU hardware to get computationally efficient results, makes the
propused algorithm not only highly effective but also practically doable.

Scope for the Future Work

The future work would combine neural networks with nonlocal and statistical priors
Lo preserve the consigtency of ijigh-m&n'lntinn tesctured patterns, which are missed in
the u:u-l:uservaﬂ low-resalution images. Thus, this may lead to lack of texture informa-
tion inside images. Moreover, an end-to-to-end network would be proposed for joint
super-resolution and segmentation or even joint super-resolution, segmentation and

aynthisis
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