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Concise Research Accomplishment :

Accomplishments are summarized below: 1. The possibility of low-dissipation low-dispersion diagonally implicit R-K schemes has
been thoroughly investigated. 2. In the process, an algorithm is derived to propose two, three, and four stage diagonally implicit R-K
schemes with negligible dissipation and optimally low-dispersion characteristics. 3. We also document, probably for the first time,
numerical dispersion and dissipation characteristics of two and three stage Gauss-Legendre methods, viz. IRK24 and IRK36. Their
inherent potential beyond the order of accuracy is highlighted. 4. Weighted phase error reduction with targeted wavenumber space is
advocated and is found suitable. We see that IRK24 and IRK36 relate to the limiting case of the strategy advocated in this study. As we
work with A-stable schemes, it is noticed that no single implicit R-K scheme might be equally efficient across all step sizes.
Subsequently, an algorithm is devised to come up with distinct classes of two and three stage implicit R-K methods and observed that
different methods are best for a diverse range of time steps. 5. Further, as dispersion error reduction at times results in dissipation error
growth and conversely, an independent study is conducted leading to a new three stage second order diagonally implicit scheme. Such a
scheme carries an optimum balance of dissipation and dispersion accuracy is found better compared to the other three stage low-
dissipation low-dispersion A-stable diagonally implicit schemes. 6. Moving to spatial discretization, we derive a family of upwind
compact schemes with an optimally high dispersive order of accuracy. Appropriate boundary and near boundary closure schemes help
maintain the global high accuracy of these schemes. The asymptotic stability analysis establishes the efficiency of the schemes for long
time simulation. 7. Different numerical examples in one and two dimensions covering linear and non-linear propagation problems have
been solved for verification studies of newly developed spatial and temporal schemes. 8. We also work with nonuniform grids and
develop a scheme based on a comparatively smaller five-point stencil. It leads to an algebraic system of equations with constant
coefficients. The scheme carries the flow variable and its gradients as unknown and is seen to report back truncation accuracy of order
four for linear flow problems even in a nonuniform mesh. Temporally the scheme is second-order accurate. Both primitive and
vorticity-streamfunction formulations of the Navier-Stokes equations, as well as the Boussinesq equations, have been successfully
tackled using the proposed formulation.
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Experimental/ Theoretical Investigation carried out

Please refer to the attached .pdf file (Other Information Document). This is done as I found it extremely difficult to write mathematical
symbols and equations in this space. Hope it will be acceptable.

Detailed Analysis of result

Please refer to the attached .pdf file (Other Information Document). This is done as I found it extremely difficult to write mathematical
symbols and equations in this space. Hope it will be acceptable.

Conclusions

At first, we concentrated on the development of temporal discretization procedures. A new class of A-stable diagonally implicit four-
stage R-K methods with minimal dissipation and optimally low-dispersion error is proposed. These schemes obtained by minimizing
both amplification and phase error are fourth-order accurate and are suitable for stiff systems. An algorithm is outlined and is used to
develop diagonally implicit R-K methods of two, three, and four stages having low-dissipation low-dispersion virtues while retaining,
to a large extent, inherent stability and high accuracy. Next, we extend the strategy for fully implicit R-K schemes. Here, we analyze
dissipation and dispersion characteristics of the most accurate two and three-stage Gauss-Legendre implicit R-K methods. These
methods are observed to carry minimum dissipation error along with the highest possible dispersive order in their respective classes
and are inherently optimized to carry low phase error only at small wavenumber. As larger temporal step size is imperative in
conjunction with implicit methods, it is noticed that a unique scheme might not be best across diverse temporal step sizes. We derive a
class of minimum dissipation and optimally low-dispersion implicit R-K schemes by cutting down amplification error and maximum
reduction of weighted phase error. They indeed carry better accuracy for relatively bigger and varied CFL numbers. Afterward, we
explore the idea of simultaneous reduction of dissipation and dispersion error to come up with a new three-stage second-order
diagonally implicit R-K method maintaining A-stability for the entire wavenumber range. Contrary to earlier efforts of complete
reduction of amplitude error we look to allow small dissipation error and thereby enhance our leeway to substantially reduce dispersion
error. Subsequently, we work for developing a new family of upwind compact schemes. These schemes sustain optimally attainable
dispersive order of accuracy and carry virtues of minimized weighted phase error in L^2-norm over a complete wavenumber space. An
integrated approach is followed whereby appropriate boundary closure schemes with the highest possible dispersive and overall
accuracy are also developed. The asymptotic stability analysis with eigenvalue determination points to the long-time stability of the
integrators. Finally, a new transformation-free compact formulation for the Navier-Stokes equations has been proposed. The scheme
generalizes the idea of fourth-order implicit (5-5)CC formulation to nonuniform grid and carries wider appeal. Although, theoretically
the scheme is only third-order accurate it is found to report higher convergence order for linear problems. The scheme is found to be
suitable for both primitive variable and streamfunction-vorticity formulations. Diverse and appropriately designed numerical test cases
help establish the efficiency and benefits of various schemes developed in this project.

Scope of future work

Possibility of future works are listed below: 1. In the future, we want to use the newly developed spatial and temporal schemes to
simulate fluid flow problems mimicking physical situations. In particular, we are interested to explore flow around bluff bodies and
fluid-structure interaction problems. 2. Further, we are interested to construct optimized Runge-Kutta methods for the solution of
orbital problems like second order initial value problems. 3. We are also interested to derive high dispersive order accurate upwind
compact finite difference schemes for higher order derivatives. 4. The schemes may be investigated for their potential in non-uniform
grids as well. 5. Additionally, as the propagation problems involve an interplay between space and time, we shall like to approximate
both spatial and temporal derivatives in a way related to each other as required by the dispersion relation of the governing PDE.
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Detailed Analysis of result

1 Brief Review

To analyse a time advancing procedure it is often a good idea to start with initial value
problem (IVP) of the form

du

dt
= f(t, u), u(t0) = u0. (1.1)

The general R-stage Runge-Kutta (R-K) method can be defined as

un+1 = un +∆t
R
∑

r=1

brFr (1.2)

where

Fr = f

(

tn +∆tcr, u
n +∆t

R
∑

s=1

arsFs

)

, r = 1, 2, ..., R, (1.3)

cr =
R
∑

s=1

ars, r = 1, 2, ..., R. (1.4)

Using Butcher tableau [6] the above methods can be represented as

c A

bT
(1.5)

where A = (ars)R×R, b = (br)
T
R, c = (cr)

T
R. For explicit R-K scheme A is strictly lower

triangular and for diagonally implicit schemes (DIRK)A is lower triangular with non-zero
diagonal entries. At times a diagonally implicit scheme is further categorized as singly
diagonally implicit (SDIRK) if its all diagonal entries are equal.

The consistency condition, which also guarantee first order accuracy, demands that

O(∆t) :
R
∑

r=1

br = 1. (1.6)
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Some tedious derivation leads to the following order conditions [6]

O(∆t2) :
R
∑

r=1

brcr =
1

2
, (1.7)

O(∆t3) :

R
∑

r=1

brc
2
r =

1

3
, (1.8)

R
∑

r=1

R
∑

s=1

brarscs =
1

6
, (1.9)

O(∆t4) :
R
∑

r=1

brc
3
r =

1

4
, (1.10)

R
∑

r=1

R
∑

s=1

brcrarscs =
1

8
, (1.11)

R
∑

r=1

R
∑

s=1

brarsc
2
s =

1

12
, (1.12)

R
∑

r=1

R
∑

s=1

R
∑

l=1

brarsaslcl =
1

24
. (1.13)

Eqs. (1.6)-(1.13) may not be independent. In fact, only two of the three Eqs. (1.11)-
(1.13) are independent. Fifth and sixth order accuracy require satisfaction of additional
nine and twenty conditions respectively [6].

2 Diagonally implicit R-K schemes with zero dissipation and

optimally low dispersion error

Simulations in computational acoustics require highly accurate numerical schemes having
low-dissipation low-dispersion characteristics in addition to large stability limits. A review
of the literature reveals that most of the works have been done based on explicit R-K
methods [2, 3, 5, 10, 16] barring a few.

As implicit R-K methods often lead to a full system of implicit non-linear equations
and solutions of such a system at each time step is considered computationally expensive.
Alexander [1] pointed out that a way out of this difficulty lies in designing diagonally
implicit R-K schemes where the equations can be solved successively. During the last few
years, we have seen renewed interest in diagonally implicit (DIRK) schemes as they offer
the best compromise between computational efficiency and stability. In this connection,
Najafi-Yazdi and Mongeau [12] proposed a three stage diagonally implicit A-stable low-
dispersion low-dissipation R-K scheme. We further refer to the work of Nazari et al. [13]
where three truly fourth order three stage diagonally implicit R-K schemes are investigated
and optimized associated error function which is the ratio of numerical amplitude to the
analytical amplitude is used to arrive at low-dissipation low-dispersion scheme. These
schemes are presented in Table 1.

We propose a new class of A-stable diagonally implicit four stage R-K methods with
minimal dissipation and optimally low dispersion error. These schemes obtained by mini-

2



Table 1: Fourth order three stage low-dissipation low-dispersion diagonally implicit R-K
(LDDDIRK34) schemes.

Schemes
Parameter Set1 Set2 Set3

b1 1.351467260320785 0.006645466304608 0.667655846089925
b2 −1.702414526538024 0.320198061838696 0.325888518017914
b3 1.350947266217122 0.673156471856696 0.006455635892161
a11 0.675592332328701 −0.851263454665540 0.678600761183237
a21 1.351242940337120 0.221282760003727 −0.565323026062134
a22 −0.851207182169909 0.675716813905398 0.672651748784065
a31 1.351467260320785 −0.078577212831902 −8.404346586781380
a32 −1.702697002012658 −0.272422066827441 11.106859072314800
a33 0.675614858556262 0.675499639829671 −0.851256242766855

mizing both amplification and phase error enjoy fourth order of accuracy and are suitable
for stiff systems. We outline here a generalized algorithm which is subsequently applied
to propose two, three and four stage diagonally implicit R-K schemes. The algorithm is
easy to implement and for three stage it is seen that the proposed algorithm advance the
very same set of schemes as advocated by Nazari et al. [13] pointing out little scope of
ambiguity in its application. A comparative study is carried out with other diagonally
implicit schemes available in the literature by solving numerical test cases.

2.1 Dissipation and dispersion characteristics of implicit R-K
schemes

Stability and phase-lag analysis of implicit R-K method can be done by using the test
equation

u̇ = Iλu, I =
√
−1. (2.1)

Following Eq. (1.2), the solution at (n + 1)-th time step is given by

un+1 =
(

1 + IσbT (IR − IσA)−11
)

un (2.2)

where IR is the identity matrix of order R, σ = λ∆t and 1 = (1, 1, ..., 1)T being a vector
of length R.
The numerical amplification can be represented as

GN(σ) = 1 + IσbT (IR − IσA)−11. (2.3)

Comparing with the exact amplification

GE(σ) = eIσ, (2.4)

we see that for a numerically stable R-K scheme i.e. |GN(σ)| ≤ 1, the amplification
(dissipation) and phase (dispersion) errors are represented by a(σ) = 1 − |GN(σ)| and
φ(σ) = σ − arg(GN(σ)) respectively.
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2.2 Algorithm

In brief, we start by choosing an appropriate stage number R for the scheme and then
appeal at least second order accuracy. We have to introduce additional conditions such
that |GN(σ)| is unity throughout and insist requisite accuracy and make available free
parameters. Then we formulate phase error in L2-norm over wavenumber space and
deduce constrained minimization conditions. Finally, we have to solve the entire system
of equations to arrive at the proposed methods.

2.3 Two stage diagonally implicit schemes

In two stage diagonally implicit schemes A = (ars)2×2 with a12 = 0. As such there are
five free parameters {br, ars : 1 ≤ s ≤ r ≤ 2} which are to be determined. Three set of
schemes are given in Table 2 termed as S2DD1, S2DD2 and S2DD3.

Table 2: Second order two stage low-dissipation low-dispersion diagonally implicit R-K
(LDDDIRK22) schemes.

Schemes
Parameter S2DD1 S2DD2 S2DD3

b1 0.3000000000 −1.0000000000 0.5000000000
b2 0.7000000000 2.0000000000 0.5000000000
a11 0.2500000000 0.2500000000 0.2500000000
a21 0.3571485714 0.1250000000 0.5000000000
a22 0.2500000000 0.2500000000 0.2500000000

2.4 Three stage diagonally implicit schemes

Here A = (ars)3×3 with a12 = a13 = a23 = 0 and as such there are nine free parameters
{br, ars : 1 ≤ s ≤ r ≤ 3} which are to be determined such that the schemes enjoy not
only high accuracy but also good dissipation and dispersion characteristics. Three set
of schemes are given in Table 3 termed as S3DD1, S3DD2 and S3DD3. These methods
closely resemble to the ones proposed by Nazari et al. [13] as given in Table 1.

2.5 Four stage diagonally implicit schemes

Finally, four stage diagonally implicit R-K schemes are considered. For such a case, out
of twenty parameters {br, ars : 1 ≤ s ≤ r ≤ 4}, only fourteen are free since a12 = a13 =
a14 = a23 = a24 = a34 = 0 where A = (ars)4×4. Four set of schemes are given in Table 4
termed as S4DD1, S4DD2, S4DD3 and S4DD4.

2.6 Comparison of numerical characteristics

We compare the numerical characteristics of diverse groups of schemes derived here with
those available in the literature. Among two stage schemes, we consider Lobatto DIRK22
and DIRK22 schemes [6]. Among three stage schemes, low-dispersion low-dissipation
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Table 3: Fourth order three stage low-dissipation low-dispersion diagonally implicit R-K
(LDDDIRK34) schemes. Parameters closely resembles excogitation of Nazari et al. [13].

Schemes
Parameter S3DD1 S3DD2 S3DD3

b1 1.3512071855 0.0066398296 0.6729685779
b2 −1.7024143710 0.3203915925 0.3203915925
b3 1.3512071855 0.6729685779 0.0066398296
a11 0.6756035959 −0.8512071919 0.6756035959
a21 1.3512071919 0.2212466670 −0.5724538589
a22 −0.8512071919 0.6756035959 0.6756035959
a31 1.3512071811 −0.0786693505 −7.9733975150
a32 −1.7024143730 −0.2725378414 10.6758118987
a33 0.6756035959 0.6756035959 −0.8512071919

three stage diagonally implicit R-K (LDDDIRK32) method of Najafi-Yazdi and Mon-
geau [12], low-dissipation low-dispersion three stage fourth order diagonally implicit R-K
(LDDDIRK34) method derived by Nazari et al. [13] and SDIRK34 [1] are considered.
Among four stage methods we consider fourth order explicit R-K (RK44) method, a
highly accurate diagonally implicit four stage fifth order R-K (DIRK45) [6]
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Figure 1: Characteristics of various schemes: (a) Amplification factor, (b) Dispersion
error in logarithmic scale.

and the four stage fourth order singly diagonally implicit R-K (SDIRK44) method [8].
From Figs. 1(a) and (b) we have seen that among two stage scheme New LDDDIRK22
is best in terms of dissipation and phase error. Among three stage schemes, the charac-
teristics completely overlap each other for the case of LDDDIRK34 proposed by Nazari
et al. [13] and the newly developed LDDDIRK34. LDDDIRK32 [12] also display some
dissipation error as shown in Fig. 1(a) but phase error is quite less shown in Fig. 1(b).
RK44, SDIRK44 and DIRK45 become unstable at relatively small σ values. We could
not find any four stage diagonally implicit method in the literature having stability for all
σ values. In this connection, our newly developed method might just be a pioneering at-
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Table 4: Fourth order four stage low-dissipation low-dispersion diagonally implicit R-K
(LDDDIRK44) schemes.

Schemes
Parameter S4DD1 S4DD2 S4DD3 S4DD4

b1 −0.2238860718 0.4866215829 0.8165015748 −1.1182093314
b2 0.4038240795 −1.3327297974 −0.0190097285 −2.0742229755
b3 0.0727310064 0.4766400136 −0.0662717273 1.8622050279
b4 0.7473309859 1.3694682009 0.2687798810 2.3302272790
a11 −0.4632975659 0.3303348139 0.3303348139 0.3164813760
a21 −0.5285039679 1.0068323624 2.3982625691 0.2899912957
a22 0.3303348139 −0.4632975659 −0.4632975659 0.3164813760
a31 0.9132692810 0.6222820844 0.1473423563 0.8010561189
a32 −1.7043081356 −0.6710982512 −0.0034155910 −0.0416687644
a33 0.3164813760 0.3164813760 0.3164813760 −0.4632975659
a41 −0.3804715540 0.8838149227 2.3233817066 −0.5581638372
a42 0.6348036654 −0.6615144252 −0.0574270290 −0.0352818382
a43 0.1127051360 0.1447367505 −1.4752984758 0.9327760476
a44 0.3164813760 0.3164813760 0.3164813760 0.3303348139

tempt. New LDDDIRK44 shows negligible dissipation error and phase error is decidedly
less at least for small σ values which are visible in Figs. 1(a) and (b) respectively.

Although diverse numerical examples were tested during we present here only one
problem for brevity.

2.7 Problem: Linear convection equation

The linear convection equation

ut + ux = 0 (2.5)

with initial condition

u(x, 0) = e−
(x−xm)2

b2 × [cos(2πk1(x− xm)) + cos(2πk2(x− xm))] (2.6)

which is a combination of two waves of wavenumbers 2πk1 and 2πk2 is tested. Following
Najafi-Yazdi and Mongeau [12] we take xm = 90, b = 20, k1 = 0.125 and k2 = 0.0625
and compute solutions up to t = 300 for CFL numbers (Nc) from 0.5 to 2.0. Spatial
discretization is carried out using sixth order five point Lele scheme [11] with h = 0.5.
L2-norm error for various schemes are given in Table 5. From Table 5, it is clear that
the least error is reported for SDIRK44 and DIRK45 for Nc = 0.5, 1.0 and 1.5 which
could be attributed to their low phase error at small σ values. But as Nc value increases
these schemes suddenly lose stability in consonance with our earlier analysis and New
LDDDIRK44 remains the best choice for computation. We also present our results in
Fig. 2 for Nc = 2.0. Among two stage schemes, New LDDDIRK22 is clearly superior
than Lobatto DIRK22 as seen in Fig. 2(a). DIRK22 does not converge at this Nc value.
New LDDDIRK44 which carries the same accuracy as that of LDDDIRK34 [13] and
SDIRK34 [1] but better dispersion characteristic generates significantly better result as
seen in Fig. 2(b).

6



Table 5: Problem: L2-norm error between numerical and exact solutions at t = 300.

Scheme Nc = 0.5 Nc = 1.0 Nc = 1.5 Nc = 2.0
New LDDDIRK22 2.8400e-02 1.0990e-01 2.1891e-01 2.8387e-01
DIRK22 3.7762e-02 1.4291e-01 2.6006e-01 –
Lobatto DIRK22 1.0996e-01 2.8396e-01 1.9486e-01 2.8837e-01
LDDDIRK34 3.6062e-03 5.0853e-02 1.9504e-01 2.5039e-01
LDDDIRK32 4.6554e-03 1.9830e-02 4.5451e-02 7.7114e-02
SDIRK34 8.2628e-03 7.8975e-02 1.3682e-01 –
New LDDDIRK44 3.1447e-04 3.8421e-03 1.8295e-02 5.3904e-02
DIRK45 8.6713e-05 1.1398e-04 3.3721e-04 –
SDIRK44 5.8465e-05 1.0551e-04 7.5577e-04 –
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Figure 2: Problem: Numerical solution at t = 300 computed with (a) two stage, (b) three
and four stage schemes for Nc = 2.0.

3 Fully implicit minimal dissipation low dispersion R-K schemes

The general R-K methods widely known as implicit R-K methods are more challenging
vis-a-vis explicit ones. As pointed out by Butcher [6] there are compelling reasons to
study them from a theoretical and practical point of view. One of the reasons for interest
in implicit R-K schemes lies in their weak stability characteristics, which are superior to
those of explicit schemes. Alexander [1] has noted in his work that for stiff problems only
A-stable implicit R-K methods are useful. Explicit methods often suffer from stability
limitations and as such small temporal step size becomes imperative. In numerical acous-
tics, small time steps lead to excessive computational cost. An A-stable implicit method
allows one to compute with bigger step size thereby somewhat compensating for the ad-
ditional time spent on each step. A R-stage implicit Gauss-Legendre method admits an
order of accuracy as high as 2R as can be found in works of Butcher [6] and Alexander [1].
Nevertheless, it must be said that the ability to compute stiff problems that too with a
relatively bigger time step is the main motivation for implicit R-K methods. Although
good stability characteristics can be found in diagonally implicit R-K methods [8], it is
amply clear that the phase-lag virtues of diagonally implicit schemes are a compromise
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between explicit and fully implicit methods.
In the current section, we analyze dissipation and dispersion characteristics of the

most accurate two and three-stage Gauss-Legendre implicit R-K methods [6]. As larger
temporal step size is imperative in conjunction with implicit R-K methods for physical
problems, we interpret to derive a class of minimum dissipation and optimally low dis-
persion implicit R-K schemes which are obtained by cutting down amplification error and
maximum reduction of weighted phase error, suggest better accuracy for relatively bigger
CFL number. A potentially generalizable algorithm is used to design stable implicit R-K
methods for a suitable time step with better accuracy virtues. As we focus on two and
three-stage schemes a comprehensive comparison is carried out using numerical test cases.
The idea developed in this section is relatively novel and new.

3.1 Summarized Methodology

The main steps that are to be followed in deriving low-dissipation low-dispersion schemes
can be summarized as follows. First, we will start with an appropriate stage number
R = 2 or 3. We introduce additional conditions such that |GN(σ)| = 1 as discussed in
this work. Then we look to impose the highest possible order of accuracy such that free
parameters are available. We have to decide on appropriate weight kernel e−ασ2

by keeping
in mind period or wave number and time step. Phase error in L2-norm over a suitable
wave number space with the above chosen weight kernel is formulated. Subsequently, the
minimization problem is dealt with for the corresponding point of minima. Finally, the
resulting system of equations is solved to arrive at the method.

3.2 Two stage schemes

In two stage implicit schemes A = (ars)2×2. We have used weighted phase error with a
weight parameter α. We worked with four cases α = 0, 4, 16, and α → ∞ to understand
the effect of phase reduction which corresponds to S2A, S2B, S2C and S2D set of scheme.
Two stage fourth order Gauss-Legendre scheme (IRK24) is found to belong to the S2D
set of schemes. The corresponding schemes are given in Table 6.

Table 6: Second order two stage low-dissipation low-dispersion implicit R-K schemes.
Schemes

Parameter S2A S2B S2C S2D IRK24
b1 0.5000000000 0.5000000000 0.6666666667 0.8367053706 0.5000000000
b2 0.5000000000 0.5000000000 0.3333333333 0.1632946294 0.5000000000
a11 0.2500000000 0.2500000000 0.2500000000 0.4183526852 0.2500000000
a12 −0.0585699937 −0.0397174719 −0.0389376339 0.2091763426 −0.0386751346
a21 0.5585699937 0.5397174719 0.5389376339 −0.2350933158 0.5386751346
a22 0.2500000000 0.2500000000 0.2500000000 0.0816473148 0.2500000000

3.3 Comparison of numerical characteristics

The numerical phase difference of four different classes of scheme discussed above along
with IRK24 is compared in Fig. 3(a). Additionally variation of phase error of two diag-
onally implicit second order schemes with optimized dissipation error viz. DIRK22 and
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Lobatto DIRK22 [6] are also plotted. This figure amply demonstrated that there is no
difference in the dispersive nature of the S2D scheme obtained using the asymptotic value
of α and those of IRK24 and is indeed a member of a S2D family of schemes albeit with a
higher order of accuracy. σ values at which phase variation graphs intersect is also shown
in this figure. Fig. 3(b) makes it clear that with a varied choice of ∆t distinct group of
scheme might hold superiority with T/∆t = 2π/σ and to the best of our knowledge is not
documented in the literature.
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Figure 3: (a) Phase difference and (b) dispersion error in logarithmic scale of various two
stage schemes.

3.4 Three stage schemes

For three stage methods A = (ars)3×3, b = (br)3. Hence we are required to find as many
as twelve free parameters {br, ars : 1 ≤ r, s ≤ 3}. As in two stage here again we work with
four cases α = 0, 4, 16, and α → ∞ to understand the effect of phase reduction which
corresponds to S3A, S3B, S3C and S3D set of scheme. Three stage sixth order Gauss-
Legendre scheme (IRK36) belongs to S3D set of schemes. The corresponding schemes are
shown in Table 7.

3.5 Comparison of numerical characteristics

We compare the numerical characteristics of diverse groups of three stage schemes in
Fig. 4(a) and (b) along with some diagonally implicit schemes available in the literature.
As all methods studied here carry negligible dissipation errors as visible in Fig. 4(a), it
is important to point out that no particular three stage R-K scheme might be superior
globally i.e. across the entire range of ∆t which is visible in Fig. 4(b). This inherent
limitation noticed earlier in two stage fully implicit R-K methods is thus carried over
to three stage methods as well. In our work, we have found a direct relation between
dispersion error reduction and accuracy. It is seen that complete dispersion relation
preservation across the entire wave number range is futile rather a targeted reduction
with a specific region in mind yields dividend.
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Table 7: Fourth order three stage low-dissipation low-dispersion implicit R-K schemes.
Schemes

Parameter S3A S3B S3C S3D IRK36
b1 0.4902164042 0.4968572595 0.4973158852 0.4974707660 0.2777777778
b2 0.4902164042 0.4968572595 0.4973158852 0.4974707660 0.4444444444
b3 0.0195671916 0.0062854810 0.0053682296 0.0050584680 0.2777777778
a11 0.2267610814 0.2162822020 0.2155587380 0.2153144231 0.1388888889
a12 0.0000000000 0.0000000000 0.0000000000 0.0000000000 −0.0359766675
a13 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0097894440
a21 0.5149632492 0.5384237709 0.5399915310 0.5405195031 0.3002631950
a22 0.2396583441 0.2395278133 0.2395372403 0.2395409352 0.2222222222
a23 0.0381882637 0.0120518190 0.0102807976 0.0096836713 −0.0224854172
a31 0.7895342543 2.2933385501 2.6764782769 2.8373912650 0.2679883338
a32 −0.8134251058 −2.3343956093 −2.7187053498 −2.8800130375 0.4804211120
a33 0.0335805745 0.0441899847 0.0449040217 0.0451446417 0.1388888889
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Figure 4: (a) amplification factor, (b) dispersion error in logarithmic scale.

3.6 Problem: Periodic Test

In this test a periodical initial value problem represented by second order inhomogeneous
ODE

ü = −κ2u+ (κ2 − ω2) sin(ωt), t ≥ 0, u(0) = u0, u̇(0) = ū0 (3.1)

is numerically solved. This problem admit analytical solution

u(t) = u0 cos(κt) +
(ū0 − ω) sin(κt)

κ
+ sin(ωt). (3.2)

With κ > ω the exact solution consists of a rapidly and a slowly varying function. For
numerical computation two frequencies ω and κ are maintained at 10 and 15 respectively.
With u0 = 0 and ū0 = ω, the solution reduces to u(t) = sin(ωt). Results obtained are
arranged in Table 8. From the table also it is visible that for different values of ∆t diverse
schemes carry superior accuracy.
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Table 8: Problem: Absolute error at point of maxima and relative CPU time (in paren-
thesis).

Scheme ∆t=0.016 ∆t=0.032 ∆t=0.064 ∆t=0.128
S2A 1.6303e-3 (9.3) 6.3090e-3 (5.0) 2.2161e-2 (2.7) 5.4964e-2 (1.3)
S2B 7.5929e-5 (9.0) 2.1227e-4 (4.7) 5.5976e-4(2.3) 2.2917e-2(1.3)
S2C 1.3538e-5 (9.3) 3.4885e-5 (4.7) 1.5168e-3 (2.3) 2.6517e-2 (1.0)

IRK24 7.4294e-6 (9.3) 1.1798e-4 (4.7) 1.8392e-3 (2.7) 2.7734e-2 (1.3)
DIRK22 4.4369e-3 (8.0) 1.8065e-2 (4.0) 7.6434e-2 (2.3) 3.2599e-1 (1.3)

Lobatto DIRK22 6.7051e-3 (8.0) 2.8304e-2 (4.0) 1.2466e-1 (2.0) 2.8768e-1 (1.0)
S3A 5.0629e-7 (70.0) 7.9574e-6 (35.0) 1.1828e-4 (17.7) 1.3524e-3 (8.7)
S3B 3.6518e-8 (69.3) 4.8201e-7 (34.7) 1.3072e-6 (17.7) 3.5405e-4(9.0)
S3C 7.6048e-9 (67.3) 2.1913e-8 (35.0) 5.8897e-6 (24.0) 4.5921e-4 (9.3)

IRK36 2.0722e-9 (67.3) 1.3199e-7 (34.7) 8.2968e-6 (18.0) 4.9438e-4 (9.0)
LDDDIRK34 4.4967e-4 (12.3) 6.4069e-3 (6.7) 7.6013e-2 (3.3) 4.7213e-1 (1.3)
LDDDIRK32 4.3874e-4 (12.7) 2.2474e-3 (6.3) 1.4103e-2 (3.0) 9.3179e-2 (1.7)
SDIRK34 6.7715e-4 (14.0) 2.6864e-3 (7.3) 1.9398e-2 (3.7) 3.0498e-2 (2.0)

4 Three stage low-dispersion low-dissipation diagonally implicit
R-K method

In the previous sections, we concentrated on zero dissipation implicit R-K schemes. These
schemes were subsequently optimized to reduce the dissipation error. In this section,
we explore simultaneous reduction of dissipation and dispersion errors. Maintaining A-
stability for the entire wave number range we look to allow small dissipation error thereby
enhancing our leeway to substantially reduce dispersion error. Hu et al. [10] in their
pioneering investigation on low-dissipation low-dispersion explicit R-K method allowed
dissipation error |a(σ)| ≤ 0.001 and argued to strive for dispersion error |φ(σ)| ≤ 0.001.
Authors in their work successfully derived second order accurate four stage R-K methods
with accuracy limit σ = 0.85. Nevertheless the scheme being explicit was found stable
only upto σ = 2.85. Subsequently, Najafi-Yazdi and Mongeau [12] proposed a three stage
diagonally implicit A-stable low-dispersion low-dissipation R-K scheme. Constrained by
the stability criterion authors in [12] formulated a minimization problem to reduce the
error between numerical and exact amplification over a chosen wave number range. Al-
though theoretically second order accurate the main lacuna of the scheme was its failure
to satisfy important relation between nodes (cr) and weights (ars) viz. cr =

∑R
s=1 ars,

r = 1, 2, ..., R. The mathematical significance of this relation is thoroughly discussed by
Nazari et al. [13].

Here, we propose a new A-stable diagonally implicit three stage R-K method with opti-
mally low dispersion error and significantly less dissipation error. The scheme is obtained
by minimizing weighted phase error and enjoy second order of accuracy. Comprehen-
sive comparison with three stage diagonally implicit scheme (LDDDIRK32) proposed by
Najafi-Yazdi and Mongeau [12] help reveal the efficiency of the newly developed scheme.

4.1 Procedure adopted

A step by step systematic procedure is adopted for deriving the method. For three
stage diagonally implicit scheme we start by applying second order accuracy conditions.
A weighted phase error is defined with weight parameter α via L2-norm over the wave
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number space [0, π]. Mathematical simplification help express both the amplitude and
phase of the scheme in three parameter space. A comprehensive study involving varied
weight parameters reveal maximum attainable second order dispersive accuracy. The
resultant A-stable scheme carries significantly lower dissipation error compared to its
peers in the category. The proposed new class of schemes is given in Table 9 for different
values of the weight parameter α. We shall like to advance the scheme correspond to
α = 2048 for its overall superiority.

Table 9: Second order three stage low-dispersion low-dissipation diagonally implicit R-K
schemes.

Schemes
Parameter α = 256 α = 512 α = 1024 α = 2048

b1 0.4151165621 0.4202147347 0.4247546027 0.4283185727
b2 1.9181190343 1.9362789404 1.9526018051 1.9640824901
b3 −1.3332355964 −1.3564936751 −1.3773564078 −1.3924016028
a11 0.3208720847 0.3238411715 0.3262148684 0.3276158396
a21 0.1133619989 0.1103734980 0.1078120817 0.1057338409
a22 0.3209344480 0.3239229484 0.3264843652 0.3285626060
a31 −0.3407257524 −0.3441364642 −0.3468445023 −0.3482002424
a32 0.3287816175 0.3416438725 0.3518066694 0.3581217210
a33 0.3616434674 0.3541358796 0.3483009484 0.3443715544

4.2 Comparison of numerical characteristics

Fig. 5(a) and (b) shows the amplification (dissipation) and phase (dispersion) errors
of the proposed new scheme (α = 2048) along with the same information for the low-
dispersion low-dissipation implicit scheme (LDDDIRK32) of Najafi-Yazdi and Mongeau
[12] respectively. The proposed new scheme shows significantly reduced dispersion and
dissipation error as compare to LDDDIRK32. As |GN(σ)| ≤ 1, the proposed scheme is
unconditionally stable for all values σ.
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Figure 5: Characteristics of schemes: (a) Amplification factor, (b) Phase difference.
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4.3 Problem: Convection equation with a non-linear source term

Here convection equation

ut + ux = f(u) (4.1)

with a stiff non-linear source term f(u) = u − u2 is considered following the works of
Nazari et al. [13]. This equation which models non-equilibrium gas dynamics is chosen to
test the efficiency of the newly developed schemes for non-linear problems. Computation
is carried out using mesh h = 0.05 over a domain [0, 25] with initial condition given by
the discontinuous wave

u(x, 0) =











0, x ≤ 2

1, 2 ≤ x ≤ 4

0, x ≥ 4

.

For this problem, we use the upwind scheme and compute for CFL numbers 0.125, 0.25
and 0.5. Errors obtained using different schemes at t = 10.0 have been compared in Table
10. From this table we see that the new scheme performs better than LDDDIRK32. In
the absence of analytical solution error in L2-norm is calculated relative to a reference
solution obtained using IRK36 [6] method with a small CFL number Nc = 0.001. IRK36
is chosen for computing the reference solution for its overall superiority.

Table 10: Problem: L2-norm error between numerical and reference solution.

Scheme Nc = 0.125 Nc = 0.25 Nc = 0.5
New Scheme 4.4585e-06 1.6187e-05 5.1987e-05
LDDDIRK32 7.7381e-06 3.3322e-05 1.5494e-04

5 A class of optimally high dispersive order accurate upwind

HOC schemes

Compact finite difference schemes providing improved representation of a range of scales
for the evolution of first and second order derivatives can be traced to the works of Lele
in 1992 [11]. In his work Lele [11], proposed finite difference approximations which were
generalizations of Padé schemes. Tam and Webb in 1993 [15], while arguing for physically
correct simulation, pointed out limitations of the higher order of accurate approximations
for unsteady equations, especially in computational acoustics. They introduced the idea
of low dispersion error methods and contended that the underlying finite difference scheme
must bear nearly the same dispersion relation as that of the PDE itself. Tam and Webb
[15] used Fourier-Laplace transform and minimized integrated wave number error to come
up with a strategy to produce dispersion relation preserving schemes. But the work of
Tam and Webb [15] was restricted to explicit approximations. In the year 1994, Haras
and Ta’asan [9] also pointed out the limitations of higher order schemes vis-a-vis lower
order ones, on the finite computational grid and proposed a general approach for designing
implicit central finite difference schemes by minimizing the L2-norm of the global error.
It is important to note here that the differentiation operator used by the authors to define
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the L2-norm relates to dispersion relation. Haras and Ta’asan [9] used different weight
functions but the schemes so designed were limited to having formal order of accuracy
two. Since then compact finite difference schemes have found wide use in simulations of
complex flow fields [4, 5, 14, 17].

The development of upwind schemes using compact stencil was carried out by Zhong
[17]. In developing these schemes emphasis was given to asymptotical stability in conjunc-
tion with appropriate boundary closure conditions. The author used eigenvalue analysis
and the schemes were found to be less dissipative than conventional upwind schemes where
upwind biased stencils are used. Sengupta et al. in 2003 [14], analyzed central and upwind
compact schemes and demonstrated that improper treatment of near boundary stencil
points can lead to the overall instability of the scheme by using matrix-spectral analy-
sis. As a remedy, the authors suggested three optimal upwind biased compact schemes.
Bhumkar et al. [4] have been able to derive a class of optimized upwind compact schemes
having excellent dispersion relation preserving property. The schemes derived in [4] uses
three to thirteen point stencil and are derived by minimizing dispersion error in the wave
number range [0, 7π/8]. Nevertheless, the schemes do not carry optimum dispersive order
of accuracy. Although effort of Bhumkar et al. [4] is praise worthy but closer analysis
reveals that the schemes derived failed to attain the highest possible dispersive accuracy;
further no effort was made to develop adequate boundary closure conditions.

In this work, we present a new algorithm to construct a family of optimized upwind
compact finite difference schemes. The algorithm is based on the idea of constructing
schemes on centred stencils with free parameters to prevent dispersion error growth. The
schemes are made to carry optimal dispersive order of accuracy in both interior and
boundary nodes. They are found to possess minimized weighted phase lag over the entire
wave number range. The overall order of accuracy of the upwind schemes at interior
nodes are single order less than the maximum permissible order in the central stencil.
The focus here is on general and holistic approach integrating all nodal points. Hence
an asymptotic stability analysis is used to determine the stability of the inner schemes
coupled with newly developed boundary closure schemes. Finally, efficiency of the pro-
posed schemes is documented by solving the numerical test cases of varied complexity to
highlight computational efficiency, high accuracy and spectral resolution characteristics
of the schemes.

Traditionally first order spatial derivative at the jth grid point with uniform grid
spacing h is approximated as

u′

j =
1

h

N
∑

l=−N

aluj+l (5.1)

where u′

j is the numerical approximation of (∂u/∂x)j [5, 15]. But in case of compact
discretization u′

j are implicitly linked to all nodal values and are generalizations of the
Padé scheme. Following Zhong [17] compact approximation at the jth grid point can be
written as

M
∑

l=−M

blu
′

j+l =
1

h

N
∑

l=−N

aluj+l. (5.2)

This scheme uses a total of 2M + 1 and 2N + 1 grid points on left and right respectively.
Compact schemes are implicit and use compact stencil with fewer points. Due to their
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compact nature, they are able to attain higher spectral resolution on a coarser mesh. The
system is given by the Eq. (5.2) is often expressed in linear algebraic form

M1u
′ =

1

h
M2u

⇒ u′ =
1

h
M−1

1 M2u

=
1

h
Cu (5.3)

In generalM is kept fixed at 1 or 2 leading toM1 being banded, tri-diagonal [11,14,17] and
penta-diagonal [11] system respectively. Note that C = M−1

1 M2 need not be compact.

5.1 Fourier analysis and dispersion error of semi-discretization

We set the coefficients of the leading truncation term of Taylor series of Eq. (5.2) as a
free parameter ̺. The effective equivalent wavenumber [keq] is a function of k and can be
written as

[keq]j =
I

h

N
∑

l=1

Cjle
−Ik(xl−xj). (5.4)

which implies

[keq]jh = ΘRj
(kh) + IΘIj(kh). (5.5)

For an efficient numerical scheme difference between the exact wave number k and the nu-
merically estimated wavenumber [keq] must be minimized over entire wavenumber range.
This is proposed to be achieved by defining weighted dispersion error in L2-norm as

‖DEj‖L2[−π,π] =

[
∫ π

−π

∣

∣k −ΘRj
(k)

∣

∣

2
e−αk2dk

]1/2

(5.6)

for all 1 ≤ j ≤ N where α ≥ 0 is some weight parameter. We define dispersive error of a
compact scheme with equivalent wave number [keq]j as

φj(k) = k −ΘRj
(k). (5.7)

The above relation helps us to understand dispersive order of accuracy associated with
a spatial discretization. From the definition it is clear that φj(0) = 0. The following
theorem relates dispersive order to the minimization of Eq. (5.6).

Theorem 5.1.1. If φj(k) is analytic and carries zero as a root of multiplicity m with

series expansion φj(k) = km(c0 + c1k + c2k
2 + ...) then the weighted dispersion error

‖DEj‖L2 with α → ∞ is minimum for c0 = 0.
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5.2 Semidiscrete eigenvalue and asymptotic stability analysis

In the previous section our focus was on low dispersive stable discretization at interior
and boundary points simultaneously. In this section we explore long time behaviour
of the discretization strategy. Carpenter et al. [7] in their study have shown that G-
K-S stable (also known as Lax stable) semi-discrete scheme in conjunction with locally
stable temporal scheme need not remain bounded for all times, even for a physically
bounded solution. They found that for genuinely time dependent problems G-K-S stability
of a discretization alone is not sufficient and such discretization strategy might require
excessively large number of grids for long time simulation thereby negating the basic
advantages of compact schemes. With the physical boundary condition imposed at the
grid point j = 1 the semi discrete version of 1D convection equation can be expressed as

∂ũ

∂t
+

c

h
C̃ũ+

c

h
M̃1

−1
Bg(t) = 0 (5.8)

where ũ = [u2, u3, ..., uN ]
T and B is the N − 1 dimensional vector whose first NR com-

ponents describe dependence of the discretization on the boundary data. C̃ = M̃1
−1
M̃2

with both M̃1 and M̃2 being matrices of dimension N − 1. Further last N − 1−NR rows
of matrices M̃1 and M̃2 are same as those of M1 and M2 respectively. As argued by
Carpenter et al. [7] g(t) can be set to zero without any loss of generality. The asymptotic
stability of the upwind schemes with numerical boundary closures is analyzed by com-
puting the eigenvalues of the spatial discretization matrix C̃ obtained in Eq. (5.8). It
requires that the eigenvalues of −C̃ contain no positive real part and is necessary for the
stability of long time integration of the equation.
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Figure 6: Eigenvalue spectra: (a) New LDC5U scheme with N = 100, (b) Sixth order
Lele scheme closed with fifth order boundary and sixth order near boundary scheme with
N = 100.

Eigenvalue spectrum of the matrix −C̃ associated with LDC5U discussed below could
be found in Figs. 6(a) and 6(b) on grid 100. All eigenvalues carry negative real parts
rendering the newly developed scheme asymptotically stable. This is in contrast to the
optimally accurate sixth order Lele scheme where a pair of eigenvalues with large positive
parts could be observed pointing its unsuitability for long time simulation.
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5.3 Low-dispersion compact third order upwind (LDC3U) scheme

We have developed three point third order accuracy schemes for interior nodes 2 ≤
j ≤ N − 1 leaving free parameter ̺ for dispersion error reduction. The minimiza-
tion of weighted dispersion error with asymptotic α value gives a minimum value of
̺ = 0.7745966692. The corresponding coefficients are given in Table 11. The scheme
maintains highest the sixth order dispersive accuracy. We have also developed a sixth or-
der dispersively accurate scheme with formal third order accuracy at the boundary points
j = 1, N as shown in Table 11.

Table 11: Coefficients of LDC3U scheme.

Parameter j = 1 2 ≤ j < N j = N
b−1 – 0.4436491673 2.1622776602
b1 2.1622776602 0.0563508327 –
a−3 – – 0.0270462767
a−2 – – −0.6622776602
a−1 – −1.1372983346 −1.9188611699
a0 −2.5540925534 0.7745966692 2.5540925534
a1 1.9188611699 0.3627016654 –
a2 0.6622776602 – –
a3 −0.0270462767 – –

5.4 Low-dispersion compact fifth order upwind (LDC5U) scheme

For five point fifth order accuracy schemes for all interior points 3 ≤ j ≤ N − 2, the
minimum value of ̺ = −2.3904572187 for minimum dispersion error can be found. The
schemes also maintain eighth order dispersive accuracy. The coefficients are given in Table
12. For boundary point j = 1, N we have taken fifth order implicit boundary scheme.
For other boundary points j = 2 and N − 1 we have derived eighth order dispersively
accurate scheme with formal fifth order accuracy.

Table 12: Coefficients of LDC5U scheme.
Parameter j = 1 j = 2 3 ≤ j ≤ N − 2 j = N − 1 j = N

b
−1 – 0.1611048569 0.5325381016 0.5333708584 4.0000000000
b1 4.0000000000 0.5333708584 0.1341285651 0.1611048569 –
a
−4 – – – – −0.0833333333

a
−3 – – – 0.0013904524 0.6666666667

a
−2 – – −0.0609785725 −0.0703870482 −3.0000000000

a
−1 – −0.5411875471 −1.0433841354 −1.0166854292 −0.6666666667
a0 −3.0833333333 −0.5444944779 0.5976143047 0.5444944779 3.0833333333
a1 0.6666666667 1.0166854292 0.5121714201 0.5411875471 –
a2 3.0000000000 0.0703870482 −0.0054230169 – –
a3 −0.6666666667 −0.0013904524 – – –
a4 0.0833333333 – – – –
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5.5 Problem: Linear wave equation

The linear model equation [7] is described by

ut + ux = 0, −1 ≤ x ≤ 1, t ≥ 0 (5.9)

with the boundary and initial condition

u(−1, t) = sin 2π(−1− t),

u(x, 0) = sin 2πx, −1 ≤ x ≤ 1, t ≥ 0. (5.10)

The exact solution is given by

u(x, t) = sin 2π(x− t), −1 ≤ x ≤ 1, t ≥ 0. (5.11)

We have used 41 grid points for computing the solution and computed upto time t = 60.
Explicit RK44 is used for time advancing. For spatial discretization, we have used LDC3U
and LDC5U. For all times the exact solution is a travelling sinusoidal wave of amplitude 1.
Simulation was run at Nc values 0.25 and 0.5. In Fig. 7(a) we have plotted L2-norm error
with time at Nc = 0.5 for New LDC5U scheme. From this figure, we see that at early time
error growth is registered but very quickly it settles down to periodic error variation with
small amplitude. In Fig. 7(b) we have plotted L2-norm error with time at Nc = 0.5 for
sixth order Lele scheme with fifth order boundary and sixth order near boundary closure.
Although theoretically, the scheme carries higher order of accuracy an unbounded error
growth is registered. This relates well with the presence of eigenvalues with positive real
part as documented in figure 6(b) implying the importance of asymptotic stability.
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Figure 7: Problem: L2-norm error with time for Nc = 0.5 (a) New LDC5U scheme, (b)
Sixth order Lele scheme with fifth order boundary and sixth order near boundary closure.
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RECURRING
GFR 12 -A

I(See Rule 238 (1))I
UTILIZATION CERTIFICATE (UC) FOR THE YEAR 2021-22

in respect of RECURRING
as on 12th June 2021 to be submitted to SERB

UC (Provisional/Audited)
(To be given separately for each financial year ending on 31 st Marsh)

1.    Name Of the grant receiving Organization: TezDur University
2.    Nal.ne of principal Investigator(Pl)               : Dr. Shuvam sen
3.   SERB sanction order no. & date                 : MTR/2017/000038 dated 29th May 2018
4.   T"e of the pro.iect                                       .. DeveloDment of disl.ersion. dissiDation characteristics

r)reserving finite diffe_I_ence schemes for fluid flow r}roblems
5.    Name of the SERB Scheme                         : MTR-MATRICS

(_Mathematical Researoh lmDact-Centric SuDDort Scheme)
6.   Whether recurring or non-recurring grants: Recurrina
7.   Grants position at the beginning Of the Financial year (Grants released by SERB)

(i)    Cash in Hancl/Bank/Cany forward from previous financial year       : Rs. 29§9§±

¢i)    Others, If any                                                                                                         : ±!!±

(iii)   Total                                                                                                                        : Rs. 2939§E

8.    Details Of grants received, expenditure inourred and closing balances: (Actuals)
UnspentBalanceofGrantsreceived

InterestEarned lntel.estdeposited

Grants received during the year

TotalAvailable
Expenditureincurred ClosingBalances

Remark
previous years[figureasatSl.NO,7(iii)I thereon back totheSERB funds(1+2-3rd)

(5-6)

1 2 3 4 5 6 7 8
Sanction No.  (i) Date (ii) Amount (iii)

29,305/- NIL NIL NIL NIL NIL 29,305/- 28,590/- 715/-

Closing balancecorrespondtototalinterestearnedover3years

ompone.nt wise utilization of grants
Grants-in-aid-General Total Remark

Research Grant Rs.  16,994.00

Overhead Rs.  11,596.00

GRAND TOTAL RS.    28,590.00

10. Details of grants position at the end of the year
(i)     Cash in Hand/Bank Rs. 715.00
(ii)    Refunds to SERB, If any                                          : D!l±
(iii)   Balance (Carry fomrard to nextfinancial year): Rs. 715.00

•,`
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s[gnaturetil\nwlName:
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Signature with Seal
Name:

Fi nance       leer Head of Organisation
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GFR 12 -A

I(See Rule 238 (1))I
UTILIZATION CERTIFICATE (uC) FOR "E YEAR 2021 -22

•in respect Of RECURRING

as on 12th June 2021 to be submitted to SERB
Is the ue (Provisional/Audited)

(To be given separately for each financial year end.ing on 31st March)

Certified that I have satisfied that the conditions on which grants were sanctioned have been duly
fulfilled/are being fulfilled and that I have exercised following checks to see that the money has been
actually utilized for the purpose for which it was sanctioned:
(i)         The main accounts and other subsidiary accounts and registers (including assets registers) are

maintained  as   prescribed   in  the   relevant  Act/Rules/Standing  instructions   (mention  the
Act/Rules) and have been duly audited by desigrmted auditors. The figures depicted above tally
with the audited figures mentioned in financial statements/accounts.

(ii)        There  exist  internal  controls  for  safeguarding  public  funds/assets,  watching  outcomes  and
achievements of physical targets ngaiust the financial inputs, ensuring quality in asset creation
etc. & 1he periodic evaluation of internal controls is exercised to ensure their effectiveness.

(iii)      To the best of our knowledge and belief; no transactions have been entend that are in violation
of relevant Act/Rules/standing instructions and scheme guidelines.

(iv)       The  responsibilities  among  the  key  functionaries  for  execution  of the  scheme  have  been
assigned in clear terms and are not general in nature.

(v)        The benefits were extended to the intended beneficiaries and only such areas/districts were
covered where the scheme was intended to operate.

(vi)       The expenditure on various components of the scheme was in the proportions authorized as per
the scheme guidelines and terms and conditions of the grants-in-aid.

(vii)      It   has   been   ensured   that  the   physical   and   financial   performance   under   .................
(CRGINPDFAICR...„etc.) Orame of the scheme has been according to the requirements, as
prescribed in the guidelines issued by Govt.  of India and the performance/targets achieved
statement for the  year to  which the  utilization  of the  fund  resulted  in outcomes  given  at
inexue

I duly enclosed.

(viii)    The utilization of the fund resulted in outcomes given at Amexure -11 duly enclosed (to be
formulated by the Ministry/Department concerned as per their requirements/specifications.)

(ix)      Details of various schemes executed by the agency through grants-in-aid received from the
same Ministry or from other Ministries is enclosed at Amexure -H (to be formulated by the
Ministry/Department concerned as per their requirements/specifications).

Drfe:3o.o7.2o2i
Place: Teapur
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s.gn.,u%eTsignaturewith se     donul

Name: Name:
Finance Officer Head of Organisation
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Annexure-[l
REQUEST FOR ANNUAL INSTALMENT WITH UP-TO-DATE STATEMENT OF EXPENDITURE

1.   SERB sanction order Noand date

2.    Nameofthepl

3.   Total project cost

4.    Revised project cost      (if applicable)

5.   Date of commencement

6.    Statement of Expenditure

7.    Grant

I

: MTR/2dr7/OO00se dated 29th May 2oi8

:  Dr. Shulvam Son

: 6'60'00ly-

: Not Applicable

Month

e, 2018

ise expenditure incurred during current financial year 2021 -22

Month & year
)Expenditureincurred/Committed

Remark
April,  2021 NIL,

(

May, 2021 RS.  25287.00

June, 2021 Rs.     3303.00                               )

July, 2021 NIL(1

August, 2021 NIL)

September, 2021 NIL)

October, 2021 NIL,

November, 2021 NIL,

December, 2021 N]L\

January, 2022 NIL1
'

February, 2022 NIL'1

March, 2022 NIL`i

Total Rs. 28,590.00

received in each year                                                     )

(a)  1st Year

(b)  2nd Year
(c)  3rd  Year
(d)  Interest, if any

: 2,20'000/-

: 2,20,000/-
:  1,20'000/-

715/-

(e)  Total (a + b + c + d)                :5,60,715/-



Sfatement Of Expenditure
.nf=.9nl ft tr. 12_flG_2n21 _ Final

Sr. Sanctionod Total Funds Expend iture lncurrod Total Balance

RequirementofFunds Remarks

No.(I) Heads(11) Allocated 18t Yea, 2na year 3rd Year (1 8t 4th Year (let Expenditure aeon
(indicate (|3th June 2018 (1St April  2019 April 2020 April 2021 till 1 2th June

§anctioned to to to to 1 2th June 2021(lx='1]-VIll)
or revised)(Ill) 31St March 311 St March 318t Marsh |2th June 2021(v,I,=,V +V+Vl+Vll) (if any)

2019) 2020) 2021) 2021)

(lv) (V) (Vl) (VII)

1-
ResearchGrant

5,09,091.00 1,76,328.00 1,82,671.00 1,33,098.00 16,994.00 5'09'091.00 NIL NIL

2. Overheadexpenses 50'909.00 14,500.00 18,000.00 6,813.00 11,596.00 50,909.00 NIL NIL

3.
Interestearned 715.00 - 715.oo¢r,

4. Total 5,60,715.00 1,90,828.00 2,00,671.00 1,39,911.00 28,590.°°C
a  5'60'000.00

715.00` NIL

Closinobalancecorrespond tototalinterestearnedover3years

ul                   s,gnatranea]\EEEE± H

grB#RE#8fD;et:CriesofprojeetTeife
#alapL¥#htei}gr

Signature with
Name:
Finance

Ft"neoffi`¢¢T
urtJ#twdr\STirfu

1.     Expenditure  under the sanctioned  heads,  at any point of time,  should  not exceed fund

Name:
Head of Organisation

Registrar

s¥ig%??e"d'u¥d"e'.rvtehrast';%ad,w,thoutprior
approval of SERB i,e.  Figures in Column (lx) should not exceed corresponding figures in Column (lil)

2.     Utilization Certificate (Annexure Ill) for each financial year ending 31St March has to be enclosed along with request forcarry-
forward permission to the next financial year.
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