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0 TITLE OF THE PROJECT: Smooth Bootstrap Estimation of Various Mcasures of
Accuracy and Band Width Selection for Kernel Density Estimators.

10. OBJECTIVES OF THE PROJECT: The kernel density estimator is one of the most
widely used statistical tools. Practical implementation of this estimator depends crucially on
data based choice of a smoothing parameter. Appropriate amount of smoothing depends on
the data, the type of problem and the measures of accuracy. We consider three types of
problems in the context of density estimation, viz. global estimation, local estimation of the
density function and also interval estimation of the density at a design point. In global
estimation we construct a function based on the dat
unknown density, and the accuracy of such an estimator is usually me
integrated squared error (MISE). The Ly distance between the kernel estimator and the actual

density is also another importanl measure of accuracy. In local cstimation, the goal 15 1o

estimate the value of a continuous density at a specific point, and the accuracy of such an
¢stimator is measured by mean squared crror (MSE). In interval estimation, the aim 1s o
construct a confidence interval for the unknown value of the density at a point with a spcun'lc_
coverage probability. The accuracy of such a conlidence interval is measured n erms of
MISE, L, distance, MSE and the coverage crrot are unknown. -Rclmb!c
context of bandwidth selection for local,

In this project we aim (o

a which can serve as a proxy for the
asured by mean

coverage error .
estimator of these measures are essential in the
“lobal or interval estimation of the unknown density.

| We propose new bootstrap based estimator of MISE of a kernel density estimatol
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8. Obtain asymptotic properties the resulting estimators.

U'se extensive simulations and analysis of real data to get insight into the finite samp|.
performance of the proposed bandwidth selectors.

WHETHER OBJECTIVES WERE ACHIEVED : Yes

JIVEDETAILS)  The objectives of the project were achieved in terms of five articles. 1 oo
i which are published in peer reviewed SCI indexed journals and two are unpublished
nographs. The summary of the five articles are as follows.

Swummary of the first article:  Smoothing methods for kernel density estimators struggl.
“hen the shape of the reference density differs markedly from the actual density. Ti
~mooth bootstrap bandwidth selector minimizes an estimator of the Mean Integrated Square!
Error (MISE) of a kernel density estimator, The smooth bootstrap based MISE estimato-
depends crucially on a pilot bandwidth A. The earlier bandwidth selectors used som:
reicrence distribution to estimate the unknown constants in the pilot bandwidth 2 used in ik
MISE estimator. When the shape of the density generating the data and the reference densit
differ widely, the resulting estimates perform poorly. We propose a new smooth bootstrap
method where the choice of A does not involve any pilot estimate, and no referenc:
distribution is used at any stage. The proposed bootstrap performs reliably in difficult cases

and asymptotically outperforms well known automatic bandwidths.

Summary of the Second article:  We consider the problem of data-based choice of
h;md’-.'.J'tillll of a kernel density estimator, with an aim (o estimate the density optimally 2%
given dgs;gn point. The existing local bandwidth selectors seem to be quite sensitive [0 the
underlying density and location of the design point. For Instance, some h'lﬂdividih selector
perform poorly while estimating a density, with boumle‘ i I
struggle to estimate a density in the ail region or at the
multimodal density. We propose a scale i

d support, at the median. Ot

- ;1_
trough between the two modes o:hc
— : ; ariant bandwidth selection method such that |
L;s;tlll}:ng dcgsuy cstimator performs reliably irrespective of the density or the design point

> choose b | o
ey de{:}::is;. f;l:‘d“f]d[h by minimizing g bootstrap estimate of the mean squared error (MS'EJ
Y estimator. Qur bootstrap MSF estimator is different in the sense that we estim®



the vartance and squared b components separately, W praovide msight o the asymptoti
vl 1 L it Y Y 1|3 | br
acouracy ol the Propic cil density estimaton .

Siemmnen s oif the Thoed cartiels In the third paper we address the problem of pomt-wise and
ol I I .y 4 v/ .y . L P .
crnel den Aty estimators using random bandwidth

maooth bootstrap or cross vahidation bandwidth:

mtlonm convergenct Az, plug-in
Most of the known asymptotic |'Il‘fl'|)t:1'FI.=:‘~ of
kernel density estimator were obtained assuming that the bandwidth sequence is a non
candom positive sequence However |1|;|\'|It':i| :l|‘lp|i[::llihll\. of kernel flf.'Ti'wI'I'-l,' estimation
depend crucially on efhiciemt algonthms for data-based choice of the bandwidth w Park and
Marron (1990), Cao et al. (1994), Bosc and Dutta (2013) for a review and comparison of
difterent data-bascd bandwidth selection algonithms. Such bandwidths  arce functions of the
dataand s hard 1o compute the bias of a kernel  density estimator using such random
bandwidths We obtam the rates of point-wise and uniform convergence of kernel density
estimators using random bandwidths under 1a.d. as well as strongly mixing dependence
assumptions Pomt-wise rates are faster and not affected by the tail of the density

Summary of the Fowrth article: In the next article, we consider the problem of construction o!
confidence mterval for f(xp), where {is the unknown density generating the given data and x,
isapiven design poimnt. A density function may be arbitrarily specificd at a point x, Thi
techmcal difficulty is overcome by assuming that { is continuous. We propose a bandwidth
lection method for kernel based interval estimation of a density at a design pomnt, with an
am to mimimize the coverage  error. The bandwidth is chosen by minimizing a bootstrap
cstimate of the coverage crror. The proposed algorithm scems to be the first bandwidth
clector for kernel based mterval estimation of a density.

Swummary of the Fifth article: Finally in the last article, we present a new method for

automatic selection of the bandwidth matrix for a multivariate kernel density estimate, under

weak conditions. The existing multivariate methods for data based choice of a bandwidth
matree anm to minimize some L, measure of accuracy, and impose a number of assumptions
on the underlyimg density and its derivatives. In contrast we suggest to choose the bandwidth
matrix with an aim Lo minimize a suitable L, distance, and we impose no conditions on the
density function at all. The asymptotic result obtained in the paper provides insight into
accuracy of the density estimator, using our automatic bandwidth. Simulations and analysis
of real data confirm that this new method is not merely of academic interest, but compares
well with the existing sophisticated bandwidth sclectors, such as the plug-in method based on
2 stage of pilot estumation (Duong and Iazelton (2003)).

D ACHIEVEMENTS FROM THE PROJECT @ In this project we have addresses several important
problems i the context of nonparametric density estimation. In global density estimation the
A is 1o estimate the unknown density function. In local estimation the goal 1s to estimate the
value of a continuous density at a given design point. These arc different problems. In global
cotimation the parameter space is the class of all densitics on the real line. In local estimation
the parameter space 15 (0,2).In interval estimation of the value of a density at a given
point, the aim s o construct a confidence interval with coverage probability close }o a
desired level, mimmizing the coverage error. In multivariate density estimation the goal 1s 1o
cotimate the unknown joint density based on vector valued data.
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A smooth bootstrap based estimator ¢
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4
density estimator is proposed. Our bootstrap MS
estimate the variance and squared bias components separa
S A bandwidth selector is proposed which minimizes the proposed bootstrap M5
. it , g
cstimator. The proposed bandwidth selector performs reliably _cmd can be rccomm{_:nduu
safelv. especially when not much prior information on [is available (see Concluding rema-

in Dutta 2014).
6 Asympiotic properties of the resulting local density estimator is obtained. Usin:

extensive simulations the (see Dutta 2014).

7 A bandwidth sclection method for kernel based interval estimation of a density
design point, with an aim to minimize the coverage error. The bandwidth is chosen &
minimizing 4 bootstrap estimate of the coverage error. The proposed algorithm seems o !
the tirst bandwidth selector for kernel based interval estimation of a density.

8. Anestimator of the Ly distance between the kernel density estimator and the unknows
density is proposed. A new algorithm to select the bandwidth matrix of a multivariate KDE

is proposed. Asymptotic property of the resulting density estimator obtained.

14. CONTRIBUTION TO THE SOCIETY. ( GIVE DETAILS )

Kcmyll density cstimators are onc of the most widely used tools for data analysis by
practitioners. However application of kernel density estimators depend cmcimwm the
choice of a smoothing parameter, or a matrix of such parameters for P ultivariate data. Th¢
amount of smoothing not only depends on the data, but als : ! mt t‘of the problem
Qlubal e:s‘lnna[_ion of the density function, local es’limatiot:]oiptftlecv‘fﬁz:zf the density at &
oV " A It . s .
given pomt or interval estimation of density at a given point are different problems: n this



project new algorithms for data choice of the smoothing parameter have been developed for
local and global estimation of the unknown density and also for construction of confidence
mterval for the unknown density. A new algorithm for data based choice of the bandwidth
matrix for multivariate density estimator has also heen developed. These algorithms are
expected to be of great help for practitioners |
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N2 <elector where no reference distribution is used. It performs reliably in difficult case

' [ i dwidths.
S utperforms well known automatic ban |
PR @© 2012 Elsevier B.V. All rights reser.,

29 August 2

7 Seprember 2012

1. Introduction

X, are independent and identically distributed random variables with an unknown density 7). Th:

Suppose X;.....
is defined as

Lernel density estimator (KDE) of f, based on the kernel K (-) and bandwidth h = h,,

1 & y— X
K.ly) = — K(J___‘)
} nh ‘= h

where h — 0and nh — oo asn — oo. The mean integrated squared error (MISE) of K, (+) is a global measure of accurac
of K., 1t has enjoyed great popularity, especially in the context of optimal bandwidth selection of a KDE. See for instance.
Taylor (1989), Faraway and |hun (1990) and Hall et al. (1992). In this article we consider the problem of bandwidth selecnon
with a view to achieve the minimum possible value of the MISE (call it M).

Bandwidch selection procedures with this goal in mind have been widely studied over the past decade and several
orocedures to choose this bandwidth have been proposed in the literature, In particular, the Sheather and Jones (1991
olug-in bandwidth (say hgp) and the smooth bootstrap bandwidth proposed by Cao et al. (1994) (say h,o), have been
suggested as new standard methods. See Cao et al. (1994) and Jones et al. (1996) for a detailed comparison of a numbe!
of automatic bandwidths. The latter have suggested that bandwidths such as hgp be considered as the benchmark of good
g;_iformance, However, Loader (1999) observed that hgp often over-smooths and misses important features when si*“
difficult problems. As we shall see later this criticism is also relevant for hc,,.

" Corresponding author.
E-mail nddresses: boscaru@gmail.com (A. Bose), tezpur1976@gmail.com (S. Dutta).
I167-7152/5 - see front matter © 2012 Elsevier B.V. All rights reserved,
101:10.1016/.5pl.2012.08.027



A common teature i these bandwidth selectors s that any unknown tundctiional 1(f approximated by 1(/.). where

fi 1s another KDEF using the same keinel K and a ot bandwidth™ 5 [oader (1990 poimnted out that these bandwidih
selectors are heavily dependent on the speaific -_"l"ll ol » Forinstance in the smanth hoot trap method of Caa et al (11994

A8 chosen with an aim to estimate /17 (0 ) dx ace urately In Jones et al (1991, , elected with a view 1o mintmize
asymptotic (1elative) MSE for the selected bandwidth In all these methods, the best choice of depends on some function)

of the density or i1« denvatives For instance, Cao (199 Hand Caoer al (1994 have praopased the choice where (

depends on [/ o] dy The unknown constants i are usually estimated hy ipproximating the underlying density usin;
areference distribution. If this reference distribution ¢ far removed from [ the smooth hootstrap bandwidths struggle Fo,
mstance, Jones et al (1991, p 1925) have observed that for densities which are somewhat far from the Gan p
shape. the performance of their bootstrap bandwidth selector is not <o gond

The plug-in bandwidth selectors, such as hem,

SStan in terms nf

also exhibit this demerit In this method, the aptimal choice of
expressed a< a function of FU 00 P dx (see Loader 1999), which 1s approximated using [ (¢ dx By varying /. a wide
range of “optimal” values of h can be selected. The plot of h against a broad range of values of 4 is referred to as the “acryal
relation between 4 and h, To choose an appropnate value of 2, a common approach is to "assume” a relation between |
and hPlug-in methods differ with respect to the choice of this relation (see for example, Sheather and Jones, 1991 The
Sheather and Jones method uses a complicated “assumed" relation, based on estimating the density derivatives using 4
“‘T_f‘l't‘n(‘f‘ normal distribution. As 4 consequence, if [ is substantially different from a normal distribution in shape, h
suffers

The above mentioned bandwidth selectors use some reference distribution to estimate the unknown constants
When the shape of f and the reference density differ widely, the resulting estimates perform poorly. We propose a new
smooth bootstrap method where the choice of A does not involve any pilot estimate, and no reference distribution i« e
atany stage. A smooth bootstrap bandwidth h equals

h = mimmmizerof M (h). h e |,

where / 1s a compact interval and M* = M* (h) is a smooth bootstrap estimator of M. It is defined using (another) KDF K
with kernel K and bandwidth 4. See (3.2) for the definition of M*,

From (A.7)in the Appendix it is easy to see that for nA — ocandh € I,

) 1 [1 :
EIM™(h)/M(h) — 1| = O(W e +12P+\[f£[f<r‘.’“’(v) —f‘”(v)} dy

Hence the asymptotic accuracy of M* depends on the accuracy of K.? “ in estimating . Qur choice of  is motivated by the
following inequality, established in Lemma 1 in the Appendix. Here p. Gy, G, are constants which do not depend on f, but
depend on the kernel K" and the order s of the original kernel K.

G

‘ 0is) 5) 2
[ Bk - wray < S

+ o f PSP () dy.

The minimizer of the right side of the above inequality equals
Gy
(/15 y) Fay)

~1/(Zs+2p+1)
1/(2542p+1) !

L=

where C; 1s a constant which depends on K and K, The coefficient G/LJUC P 114527V varies widely depending on

the choice of f. We observe that within a class of mixed normal densities, this coefficient varies approximately from ;013
depending on the choice of f. Through extensive simulations we find that

. 1 y
W= én"- SN wheres, p > 2,

works very well. With this choice of A, let h* be the bandwidth minimizing M* in | This s our ;ecomn}endcd bootstrap
bandwidth and it works well in capturing important features of a wide variety of densities. In particular, for a second order
kernel K, p=s =12 _

In Section 2 we report a detailed simulation study and analysis of a real data set. Simulations t'!cnmn_s._rralc that for a
second order kernel, our bootstrap bandwidth can perform much better than hs and he,, banq?vnl[hs ina number {il
difficult problems - especially when f exhibits a number of peaks and sample size is moderate. In Ihcorcm 1 of Section 3,
we obtain the L, rate at which Ii* succeeds in minimizing the M as sample size is increased. Its proof is given in the Appendix.
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S04l was to capture the important features of the under_lylng i
the claw density and the mixture of ten normal densities. Loader (1999, p. 423) pbserve‘d that, while under a thEU}'-g‘_
MISE criterion, the five peaks of a claw density should be detectable for n = 193 in practice an estimate using hsjen fails ¢
capture the peaks and over-smooths. Similarly while the ten-modal structure of the underl
the data from the mixture of ten normal densities, the hsyp clearly over-smooths.

based on samples of size n — 100 and n = jo:

In Figs. 1and 2 we plot the four estimates, using h*, hsjpr, heao and hycy,
» captures the peaks of the underlyip

ties and the claw density. The estimate, using h* :
portant features. The performance of the Ccross-validation dene -
cv clearly helps to captures the peaks, for the mixture of e

ying density is quite obyig;

from the mixture of ten normal densi
test densities while hsjpr and he,, over-smooth and miss im
estimate varies depending on f- While for the claw density hy
1ormal densities the estimate over-smooths,
We repeat this experiment 100 times, and observe the same pattern - hgypy, he,, consistently over-smooth and the
is close to 1, where h* is the bandwidth minimizin:

based estimate fluctuates widely. In contrast for most of the samples, }1';

the exact MISE, So h* performs reliably.
imati ard Cauchy density based on a sample of size 500. This is a dif

For a replicated study, we generate 100 samples, each of size 500, from the standard Cauchy density. hgjpy and h

highly variable (their ISE values vary widely).
much lower sampling fluctuation, and for most of the samples the ISE of the estimate using h

the other estimates,
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The main observations are as follows. )

1. InFigs. 4 and 6, for claw and asymmetric bimodal normal mixture densities, Estimate 3, using hcy. 150V .
even for sample size n = 500. In Figs. 3 and 4, the estimate using hgp bandwidth completely fails to capty
features of f when it is the standard Cauchy or the claw density, even for n — 500,

2. From Figs. 1-7, the estimate with bandwidth J;* taptures the main features of f, even when [ h
structure, across different sample sizes, Incidentally, the estimation of the claw density for a sample 0

s a complt
n {1
f size as S™
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s avery difficul problem. Fven under a theoretical MISE criterion, the «laws Do up anly at sample size exceedins
viisee po726 of Marron and Wand, 1992), Therelore LA not surprising that the estimates USIOg Ny and by complerely
miss the claws (see | 1A middle panel) tor n

S0 However it iy encouraging to note that even for this small sample sz
ctaptures tour out of the five peaks at the expen:
wEstimates 1 and 4, using h* and Moy, are
We may conclude that i

Fstimate | using h e ol some spurions wiggles near the tal. For mixed
almost indistinguishable, especially for large n (see Figs 4

performs rehably in difficult cases while the perform
density to anothes Moreover, the performance
the shape of f This is not true tor he,, and Ny,

novmal densiiyes

ance of hey, and heym vary from one tes)
ol the estimate using h* improves drastic ally as nincreases. irrespective of

L From Table 1 we see that the AISE, using ", decreases much faster than the AISE using he,, and he
densities. For f equal to the claw density and standard ¢
when s increased from 50 to 500. In Fig, 4, the
misses the peaks of the claw density, even for n —
(see Fig. 4)

pr, for all five test
auchy, the AISE using hg does not seem to decrease at al| even
hsip density estimate (numbered 2) is over-smoothed and completely
500, This is reflected in the AISE values. The same is true for he,o as well

4 From Table 1 we see that the AISE values using hyey and h* are ¢l
estimate using ey seems to perform well for f equal to a mixed no

to the Cauchy density and n = 500, the AISE using hycy is much |
distribution, the AISE using hucy decreases only marginally (less than 20%) even when n is increased from 100 to 500. As
mentioned above, this observation is also true for the estimates using he,e and hsypi. In contrast, for the same distribution,
the AISE using h* is reduced by nine times as n is increased to 500. This rate of improvement in the estimate using h~ is
quite remarkable, as a KDE using a fixed bandwidth is generally considered inadequate for estimating heavy tailed densirie-
see Loader, 1999, p. 435). In general, the density estimate using i* seems to perform reliably irrespective of f.
The comparison of the minimum ISE values for the estimators using h*, hsier and hey, lead to similar conclusions as above,
For a complicated f, such as the claw density, the accuracy of the estimate, using hsypr and he,, improve very slowly even
when the sample size is increased drastically. The minimum ISE values of the density estimates using hycy and h* are similas
for all the test densities and sample size. For f equal to the standard Cauchy density, the hy, bandwidth exhibits very high
sampling fluctuation. Overall h* seems to perform much more reliably, in comparison to the other bandwidth selectors.

ose for the mixed normal densities. In general, the
rmal density, especially for large n. However for f equal
arger than the AISE using h*. Moreover, for the Cauchy

2.1 Application to real data

A popular data set is the eruption durations of the Old Faithful

(see Loader, 1999) - we consider the one that comes from Azzalini and Bowman ( 1990) and is also available in the MASS
package in the software R, using the command “geyser$duration”.

Loader (1999) pointed out that the comparison of the plot of density estimates, using different bandwidth selectors,
conveys a one sided view of the bias-variance trade off. High variance can be seen in terms of a wiggly estimate, but there
5 110 way to visualize bias. In simulations one has the advantage of comparing an estimate with the actual density. But for
real data, the bias cannot be seen, Therefore while modeling real data sets, the author emphasized using additional criteria,
such as comparison of Akaike-style criterion to decide the appropriate bandwidth for a given data set

He has provided strong evidence that estimates using classical bandwidth selectors, such as the cross-valid
bandwidth, can reveal important features present in the data. Therefore, we

geyser. There are several versions of the Old Faithful data

ation
also consider the unbiased cross-validation
bandwidth (hycy) along with h* hsjp and he,,. The corresponding density estimate plots are displayed in Fig. 8. We also
calculate the Akaike-style criterion (AIC), defined in Loader (1999), for the four bandwidths. The lower the AIC value, the
I1ore appropriate the estimate is.

InFig. 8, the estimates using hycy and I* clearly reveal three peaks, located close to 2,4 and between 4 and 5. The curve
using heyy also indicates three peaks. In contrast the estimate using he,, exhibits two peaks, located close to 2 and 4. The



4

N = 200 Bandwidth = 07638

Fig 8. Density estimates of Old Faithful geyser

two peaks, located close to 2 and 4, are much taller in the estim:
pstimates. With real data one cannot be sure, So we compare Al

; R : . eee
The AIC value is minimum for hycy, indicating that the estimate using hycy
r ir*, than those for hgpr and hc,..

s. AIC values suggest thar
tured by hc,,. There s

bandwidths for this particular data. The value of AIC is lower fo

7 i re

The density estimates using hycy and h* seem to exhibit a[mo;t the samehfea:::a

Faithful geyser data. features revealed by hycy and h* are more rellablg than those cap
srominent peaks, and the peak near 4 seems to have the highest density.

3. Asymptotic properties

The MISE of a KDE, using kernel K and bandwidth h, is defined as

M= / E[K_nfy; —f(y)}zdy =V +B, where

o=

2
3 1
V= —L K*(v)dv — E-/-'/K(U]f(y—h”)d”’ dy,

2
and B = /Lr/f(fu;ffy—hu)du —f(y)] dy.

A <mooth bootstrap MISE estimator, say M*, of M is then defined as:

Mthy=M" =V*+ 8, where

L, L1 :
V' = — /I("ru)dn — —/ [/ K(t:}iﬂ?(y—hu}du] dy and
nh n ;

. - z
B = / [ / K(u)k?(y — huydu — Kr?(yl] dy.  where

Fe e and heso (1eft to right) respe:
eruption durations, using ey, hsjpr and hes

ates using Nucy and h*. than the same Peaks in the
C values for the four bandwidths.
ms to be more appropriate 1

K" is another kernel and K is the corresponding KDE using the bandwidth A. Different choices of K¢ and A it

versions of M*,

In the sequel we assume that M*, M are minimized with respecttoh, forh e [ = [

Remark 1. Restricting h to constant multiples of

such bootstrap bandwidth selectors.

m?';:-; is not too demanding (see Assumption 2.3 11 P u
1990). Different versions of h minimize different versions of M*, using different choices of » and/or K- We men

]Jl‘ldﬂ““l '

ark and ¥

f
ondt
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laylor's (1989) bandwidth selector hy 1s a minimizer of M* using ) h. Faraway and [hun (1990) proposed to select
h by minimizing M", where 4 is chosen by least-squares cross-validation. Jones et 4] | 1991) proposed yet another \.r'r;txlull

of h (say hyy) where K, K" have eight bounded continuous derivatives and ; Cn"h™, where C is a constant having 4
complicated expression depending on the integrated squared derivatives of f =
Cao's (1993) bandwidth selector (say hic,, ) is obtained by minimizing M using K' K. where K is a second order kernel

with six derivatives and 4 is independent of h

Let us collect below all the assumptions that we shall require on the two kernels and the bandwidths. A function H -
said to be uniformly bounded if [[H|| = sup _  _ |H(y)| - ~o.lets. p = 2ands. pdenote the orders (defined later) of

the kernels K and K" respectively,

Assumption A (On Density [,

1} The density [ () 1s uniformly bounded, and possesses (s + p) continuous derivatives.

(n) The jth density derivative 1 15 uniformly bounded and square integrable, forj = s p. (s + p)
Assumption B (On Kernel K). K () is the sth order square integrable, symmetric kernel. ie K(—v) — Kixl [ Kivids
I [KXdx=0,j=1.2.....8—1 and [ [K(x)x*|dx = oo. Also let [ |K(x)x*"dx — ~

Assumption C (On Kernel K™).

(1 The pilot kernel K”(-) is an absolutely integrable pth order kernel, i.c. [K)dx = 1. [ K (x)0dx 0
1.2.....p—1.and [ [K°(x)x"|dx < oo, p > 2, such that
(a) K"(-) 1s symmetric, continuous and uniformly bounded.
(b) K%x) — 0as |x] = oo

(1) K%() has s continuous derivatives on (—oo, 00) and its sth derivative K°¢'(.) satisfies the above conditions (4, and
and also the following.
(©) [ K" (x)]dx < ox.
d) [K"(x)¥dx = 0, wherej = 0,1,2,....s — 1,s+ 1,....5 + p — 1. CU K% (xpedx = 1 and

[ KPS (x5 P |dx < oo,

Remark 2. (i) The choice of pin A (ii) depends on K°.If K° is the standard normal density and K is any second order kerne!
then Assumption C is satisfied fors = p = 2.

11} Assumption A(i)-(ii) on f are valid for a wide class of densities which include the mixed normal, the Cauchy, the
beta(m.n) (m.n > 2) and the gamma(n) (n > 2). For a second order kernel K, Cao (1993) obtained asymptotic
properties of his bootstrap bandwidth selector assuming that f is six times differentiable, the derivatives are bounded
and the first four derivatives are integrable. But for a second order kernel and for p = 2, we require assumptions onl:
on the first four derivatives of f, i.e. we impose fewer assumptions on f.

(111} In Remark 3.3, Hall et al. (1992) suggested that the asymptotic accuracy of a smoothed cross-validation or a smoothed
bootstrap bandwidth can be improved by using K° to be a higher order kernel. As we shall see, this observation is also

true for our proposal. K°(x) = @cﬁ{x}. where ¢ (x) is the standard normal density, is a fourth order kernel For i

2 . - & -
equal to any second order kernel and K°(x) = @q}(x), the Assumption C is satisfied fors = 2 and p = 4.

The following result provides a bound on the Ly accuracy of h*.

Theorem 1. Suppose s, p > 2, Assumptions A-C hold, h — 0 and nh — o0, asn — .
" C ¢ L& > _» i AFIve o
Let )k = Tmpmandhel = [”-,—ul,—ﬁ ;ﬁ{—{;ﬁ] where 0 < €, < €, and C is a positive constant. Then

E\M:ﬁj | :
‘Ml{h'}"] =g np/2sizpity | where

- M(h”) is the minimum value of M for h € |.

~ Suppose K is a second order kernel, satisfying Assumption B. If KU is the Gaussian kernel, s = p = 2 and Assumption C
on K" is satisfied. So under Assumption A on f, using A = ;ﬂ% in Theorem 1,

M(h*) ( i
El—— —=1|=0{—|.
M{h:) nZ;’!l)
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Therefore under the above conditions, h* is asymptotically more accurate ilsg

plug-in bandwidth hy,. A—
. Theore oes to zero faster as p is increyg, "
' o ter (in the right side of Theorem 1) g ed. §g
Remark 3. (i) For fixed s, the term TFTOSTIRTT

. 0 i -

*qual to a higher order kerpe .,
. ) - ther by using K™ eq - alishy,

rate at which E ':;-‘-ﬁ.}. ~ 1| goes to zero can be improved fur V4 . o | .
(h | KO(x) = (3—x Lp(x) (so that s = Zandp :—.4J[h[_1_:'

Assumption CoFor example, if K is a second order kernel and = T2 -

- | Ml 1
which E \\—, -1 = O(,_,; 13)- P :

h , is not advisable tg § < -

Forfixed p. ——55 — 0ata slower rate as s is increased. So from Theorem 1, it is takes . 5,

. /T ; i i reover, Marron and \Wyn.
well known that a higher order K can lead to a negative valued densltg,él estlr_nraltigcl‘\!ﬂnfi proTERBNE w;{: fi:-*:r
provide substantial evidence that the use of higher order K does not lead to sig OF Very |,

samples. Simulations in Section 2 confirm that K, K° = ¢ work well.
) ) 3—x2 ; . §
Some further improvement may be achieved using K°(x) = %qb(x). ESP:‘JCHHY for large sample S?ZE. H.OWL
sity estimate using the proposed method, with both K, K® = ¢ and A = gat7s+ seems to perform reliably in g nyp,,
cult examples so these choices of K, K° and A remain our recommendation.
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Appendix

Let C denote some positive constant independent of n, h or A, and DCT stands for Dominated Convergence Theor
Lemma 1 is used in the proof of Theorem 1 and also in the introduction of this paper.
Lemma 1. Supposes. p > 2, Assumptions A-C hold, . — 0 and p,1+2s —> 00, as n — o0, Then

i )si (s p C
[ £ ) - oy < izt [ gy

Where C, and C, are purely functions of K" and K respectively,

Proof, Let ys recall that

. ]l n _ X 5
K@) = — Y gof ¥ A o, 1 Yl
Y A L ( B ) =K (y) = e ZKU(s) e (4
=1 3 n ;:1 A‘

Therefore, El(y)) = 1 K% (u)f (v — : ) gl ()
') + by), where 7/ WY = huydu. Expanding JO = Au) under Assumption C on K, E[Ki
(=1)tr)p

|
bry]:_- (UI'S) s+p Stp—1 g1
f_s_—fﬁfﬂ‘,rf’ (u)u ! (1 = gy*te=ig Py — tAu)dtdy.
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Applying Cauchy-Schwartz mequality it is easy to verify that

C'A4 ; )
’ ' I 5 1 ] i
b () - n /, K" (i (1 =1 [F "y r-.,“I dtdu
(s +p LY R [
where € Consequently, under Assumption A on ' " ()
P | 1 4 L ;.I;
|,TH\ (v / l'I.\l b (y) -1 (V) (AN
[(s 4+ p— 1

c'as

. / E;’|.'\' w1 - 'n'l] dy /.HH'\(‘\’

[s+p— D,
Therefore

, [EIK 001 = o] dy < ¢ /‘U"‘ "y dy.

where C = ——— and g(y) = [ |[K°® (u)us*?| j;]'(l — O SIY (y — o | didu.

It is easy to verify that

) . +Ois | j ; h Xl
Var [K* () ]dy = OO | ——
/ ar [K)*' (1] dy mTe: / Var [J\ ( = )}dy

« 014 2 J K )] du |
= oo [ [T ro = unyduay = LS

Now
[ E[K 0 =] dy = / Var [K99 (y)] dy + f [EO9 @)1 — F9 3] dy.
Therefore from (A.1) and (A.2) we see that

- 2
fi ) & o S KO W)]” du
/ E[K o) =] dy < LN nk‘+25] +C2A2"f[f“+p’(y]]zdy.

where C = —— [ |K° (u)u"?|du. This completes the proof of the lemma. O

Proof of Theorem 1. Under the assumption h € [, h* and h* are minimizers of M and M*, with respect to h, in [ =
[I—J— - ] Therefore h*. h* € I. Recalling the definitions of M* and M it is easy to verify that, almost surely,

LT

IM™ — M| < Ly, + Ly, (say), where (A3)

. 2 ‘ 2
Ly ll] {fK(L')Kf,’fy—hu)du} dy—f[] K(U)f{y—hu)dt.'l dy
n

2 . 2
Lz.,:‘ {/K(u)Kf{y—h‘u)du—K,?(y)] dy—/ [fK[u)f{yﬂh.u]du—f{y\] dy| .

]

I

Jsing |a* — b?| < (|a| + b)|a — b|, forany aand b > 0, it is easy to see that (writing y* =y — hv)

LS 5— [“ff({vlf“(,?(y')! +ff_y’))dul I[K(U}IK,?{_V") —_r(_v‘ndquy.



« and Prob bl

A Rece S Dutta/ Statisi e
gative) sing this!

. f yn-nNede
oy 4 2f(y") (as 15 Nt

Now |[K'(v*| fivh) K%y ) [y
| | | 1

. i LY, "|"|(f'l
]| /H-_ W) rr\-.} dy + 2 , fn) K, vy — 1 y) "I

I ‘dy | = € 1y |
Jl ) /'F_r”.‘ V/’K_r”\“ .f|v]l (hJ |
ay t « i
\ -

|tk -0

| ising Taylor's expansior

and K.
Now under the smoothness Assumptions A and ( on/

: sol .

I . u // (1-10) oKy
(1N ST JJ0

o

A

< (a—b)? +2bla—bl|, a, b:

n'V

thindtdu

2

(1-0° 'Kapu'f'y H:ulﬂ'ldﬂl dy| -

: ) - 0, we see thal
Further using |a* — b*|

Lan = : I o [/f;fvd_p + 2 / [fz_‘,_{;_,,] dy:’ where
(s—1)M]* L y
o Al
foy = / |Kumr1/ (1—t) 1lf“’(y—-rhuj—-K:f"‘(y-—rhu”dtdu and
- +0
1
fy = — 0 |f9 (v — thu)| dedu.

Further it is easy to see that

. - T
/ fdy =G f (kY9 @) - 9] dy, and f [farfay] dy < Cz\/ ] [

where C,. G are positive constants (free of n and h). Therefore the above inequalities imply that

P 06) (v) — FO ()12 f 06 (yy — fO )|
“'T-W[G / [ 0) = 190)] dy+cz( [Kn w-f (y)] dy |-

Therefore for h € 1, we see that

25 ’
s e f 0 -120 [ [0 s ] d“’}

2 -] d.

T B[ - )P
= ey, (say).
From (A.3)-(A.5) we get
IM—=M|<en+e, Yhel.
We note that ey, and e, are independent of h. Therefore

M —=M"|| =sup|M -M*| < ey, + Cay.

hel
Hence using, |inff — infg| < |If — g||, we see that

EIM(R") — M(h*)| < EIM(R") — M* ()| + EIM(h*) — M* (i)
ZE“M Mm* ” ZE{EHI +€2n)

[EUU’) K, (y) ) Ady = o(l _Hzp)
n/

quality 1L 15 €asy to see thar
L

ywith integral remaine, vio

Since K is a pth order kernel, under th ' hat
' g A . i [ v [ [ L
ssumptions A-Cand for A = ~m g from Rao (1983, p. 45) we sect
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Now recalling the formula of ¢ and using F(+/X) VEX), where X is a nonneg

(1 /1 !
jf{'lll 0 ”\ m t A

_ : canisfies the conditions on A in Lemma 1. Therefore under the stated ondition:

Aative random variable. we sce that

using Lemma |, we get

Again using Fis X ) VE(X), where X is a nonnegative 1 andom variahle, we see that

Fley) =0 ( —~ Il, i / F lK,'," '(y) .'"'t_v')rdv)

Therefore from (A.6) we see that

FIM(h*) = M(h")| < 2E|M = M"||

] J.." 1 i '-?-I' l I|'I F 0(s) N 3
v n\ ok = n2s/(2s4 1 | ] = K™ (y) —f fy;] dy (A7

Now using Lemma 1, with A = HTJ\L‘—J, v 8.p = 2,inthe right side of (A.7) we get

; 1 1
EIM(h™) — M) =0 (n‘ Fp/(2542p+H1) ¥ nis/(2st H-+-p!(2$+2p+1}) '

K cfrfond
Further we note that M > - — j—Inw Vh € I and hence

- r-Kz l
M(h™) 2 € n(2s)/(2s+1) +0 n2s/2s+1 ) °

Therefore, under the stated conditions,

M(h") _ B 1 1
M) | n!/@s+1)+p/(2s+2p+1) + P/ @st2p+1)

1
=) (np—(m) iy where s,p= 2

So Theorem 1 is proved completely. O
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1. Introduction
y continuous distribution has been an important problem in nonparar

The estumation of the density of an absolutel . _ N nonpara
statistics for a long time. Rosenblatt 1956) introduced the idea of a kernel-based density estimator which is defir:-

follows.
Let X, X, be identically distributed random variables with an unknown common density f(-). The kerne! ¢.
estimator (KDE) of f based on the kernel K(-) and bandwidth h = hy, is defined as

e ] Y= XJ

Sraty) = nh ;K h )
where the kernel K is a density function and h = h, is the bandwidth which controls the smoothness of fun. Acor
assumption 1s that K is a second order kernel, i.e. it is a density satistying | K (n)udy — 0 and j Kuuldy < .
(1962) proved pointwise convergence of such an estimator, assuming h to be a positive sequence satisfying h — '
nh — o0asn — oc. Since then there has been extensive research on the asymptotic properties of f 1. A detailed discu
on the asymptotic properties of the KDE can be found in Rao (1983). Most of these asymptotic nbrbperties are obra’

dssuming that the bandwidth sequence {hy} is a nonrandom positive sequence. However the practical application of k¢
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density estimation depends crucially on efhicent algonthms (or data based chowe of h See Park and Ma von (19907, Cao
et al. (1994, Bose and Dutta (2013) for a review and companison of different data-based bandwidth seloee tion algonthms
If his nonrandom, the convergence of the na mponent Ff Vi fiyh s rather straghtforward to obtain (see Ran
1983).. In that case, the convergence of the KDE 1+ essentially determined by the asymptotic properties of the sequenc
(v — Flfunty ] which s a sequence of the averages of a tnangular irray of mean zero vandom vanables “see Ha
083 and Wied and WeilBbach, 2011 Wied and WeiRbath (20100 have eviewed different proofs of pomtwise and amiform
convergence of a KDE using a nonrandom bandwadi]

Far less seems to be known on point-wise | Inttorm convergence of where hs determined by some data-ha
handwidth selection rule_In that case his random ie afunction of X X and E1f. vivilis hard tno ampute Therefor
it 1< difficult to prove the convergence of the bias component of the estimator in this case Krieger and Pickands (198

A . 1 Q00 . e - - 1

Mielniczuk 1 1990) have obtained the rate of pomtwise convergence of f ywhere h is selected by the plug-in method Bur
or KDE< using other data-based bandwidth selectors such results do not seem to be known Under a number of assumption
on the kernel K, mmahl and Mason | 2005) I‘Ill\'l‘f'l that for any sequences ] ] h | atisf Jing b ol il
na, logn — =

max(log(1/a,). log log n)
L Fi 0 almost surely
\ na,

and further. sup, ;.. 1EUf, 40 —] a( 1) for any uniformly continuous [, where || - || denotes the sup-norm. These result
naturally imply that ||f f o(1) almost surely, where h is a random bandwidth satisfying a, = h = b, The worl

I Einmahl and Mason undoubtedly represents a rather significant achievement in the research on KDEs with data-based
handwidths, However, there seem to be some limitations. First of all, the results in Einmahl and Mason 12005 ) do naot
provide any insight into the rate at which P(|lf, ; — fll > €) goes to zero with increasing n, for arbitrary ¢ ~ 0 But hes

Is a more serous issue. Wied and WeiRbach (2010) point out that the condition h e [a,, b,|. wherea,. b, are nonrandon
positive sequences, in Einmahl and Mason (2005) is quite restrictive. Ideally a random bandwidth his expected to be scal
invariant, i.e. h(CX;. ... CX,) = Ch, where C > 0. If a,, b, are nonrandom positive sequences, then a random bandwidtl
0, = h < b, cannot be scale invariant. As described below, our work addresses these issues.

We obtain the rates at which ry, = P(Lﬁ:.ﬁ("‘) —f(x)| > €)andry, = P(l[fll‘;l—fll > ¢)converge tozeroasn — =, where
f1s a random bandwidth which optimizes some criterion on a compact interval. We are able to obtain sharper asymptot
upper bound for ry, than ry,. As a corollary, we prove that ||.fn,.& — f|| converges to zero completely under 1.i.d. assumption
Lomplete convergence Is stronger than the almost sure convergence. In general, while the rate of convergence of r,. seem:
1o depend on the tail of [, the convergence rate of ry, seems to be unaffected by the same.

As forthe issue of scale-invariance, we make a similar assumption as in Einmahl and Mason (2005), viz.h = H, where 4
1< a sequence of compact intervals. But, the boundary points of H, are chosen to be proportional to the sample interquartilc
range. This ensures that h € H, remains scale invariant. One can also use sample standard deviation to define H, But the use
of standard deviation in H,, appears to impose more restrictive conditions on f for theoretical calculations, without any extra
senefit 'see a discussion on this issue in our final remarks). A wide variety of bandwidth selectors involve the optimization
{ some criterion with respect to h. One can always force the resulting bandwidth to be in H,, by optimizing the cniterion
nH,.

Finally, Wied and Weifsbach (2010) also remark that the Einmahl and Mason (2005) use sophisticated mathematical
cchniques based on the paper by Talagrand (1994). In contrast, we use simple asymptotic calculations and some inequalities
n Rao1983), without requiring any sophisticated mathematical technique to obtain our results. Under strongly mixing type
ependence assumption we use a Bernstein type inequality by Merlev'ede et al. (2009).

Bandwidth selectors are of two types, viz. local and global. In local bandwidth selection the aim is to estimate [ at a given
esign point (assuming continuity of f ). The global bandwidth selectors aim to capture all the important features of f, as i
s possible. The pseudo-likelihood (PL) (Habbema et al., 1974) and the least squares cross vahidation (LSCV); Bowman [ 1984
nd Stone (1984)), the biased cross validation (BCV)(Scott and Terrell ( 1987)), the smoothed cross validation (SCV) (Hall etal
1992)), the different versions of the smooth bootstrap bandwidth selectors by Jones etal. (1991), Cao ctal (1994), Bose and
utta (2013) and also the double kernel method by Devroye (1989) are well known global bandwidth selectors. All these
ethods involve the optimization of some function (based on X, ..., X,;) with respect to h. Among the local bandwidth
electors the bootstrap-based methods by Dutta (2014), Hazelton (1996, 1999) aim to minimize bootstrap estimate of the
SE of a density estimator.

While estimating f using a second order kernel it is quite common to assume that

heH,=[cn " ¢n "°], wherec, < ;.

uch an interval is well known to cover a wide range of reasonable bandwidths (see Park and Marron, 1990). Under this
sumption, a random bandwidth h obtained by any one of the methods mentioned so far can be defined in general as
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2. Main results
15 introduce some not gy,

given i section 3. Lett

or Vi ropols are
and one corollary in this section. Prools « ;
i one corollary i eherel > 1.

We state four theorems re give
i denote the Ith derivative

For any function g, let [lg|l = sup,y [8(x)] and g

' 1. 11d case

. S i i ity . In the first thegp.
In this subsection we assume that (X}, .. 1S a sequence of i..d. random variables with density f rst theorey

we provide insight into the asymptotic accuracy of f;, (). , ' _
To state and prove the theorems we need some assumptions on the kernel K and the density f. They are as follows.

. ; i st
Assumption 1. K is a second order kernel, such that K is a bounded density satisfying K"’ continuous and

1zIK(z).  |zK™M(z)| — 0. as|z| = oc.

Assumption 2. There exists 7 > 0, such that [ is strictly positive on the intervals [Q;" — 1. Q" + nl, 1= 1,3, where (|
the ith quartile of the underlying distribution.
Let us first introduce a lemma which will be used in the proof of Theorem 1.

Lemma 1. Let K be a kernel satisfying Assumption 1 and IFV| < oo Let I, = [;;Er n_f’?.g] where 0 < a < b. Then

P (sup U.,_;,{x) —f(x)] > c—) =0 (n"‘s exp(—-Cn‘”Sez)) ;

hi-ly
where C is a positive constant free of x.
In Lemma 1, a, b are positive constants. In Theorem 1 we extend this result to the case where I, is replaced by Hy. 1.e.1 4
are replaced by the random variables ¢y, ¢.

Theorem 1. Let K be a kernel satisfying Assumption 1 and f be a densi i isfyi i W <
R i [‘ un r e ) e~
Theri fareverye >0 f y function satisfying Assumption 2 and |[f""']

= PUS, 0 = f(x)] > ¢) =0 (n'® exp(—Cn"”e?)) | where
C is a positive constant free of x,

Let us introduce another lemma which is an extension of Lemma 1 to sup-norm distance between f, ;(-) and f
i .

Lemma 2. Let K be a kernel satisfying Assumpti d
ssumption Tand |||, If'")| < oc. Let 0 < [ (-4
] ) ' < : = x|V oc, for some 4
fet I = [u:‘..”w Iﬂr'?:], where 0 < a < . Then diliiabie y
ps Fo_ il _ Ui )/y)
(iu;]? Wfon = £l *) = U(ﬂ 5 exp{-fn”sez)).

C Is a positive constant.

h'l [h(f next [I‘IEOI‘QIII we Ub[a{n { ] f
|'IC rate dl WhICI = ee
ni E) gDeS (o ZEI‘O. f()l' &[‘ly [JOS] tiv .



Theorem 2. Let K be a kernel sansfying Assumption | and [ be o density satisfying Assumption 2 and |f f
let | |xI"f(x)dx - ~, for some O.Then for every « - @

:){.{ ":.. = f " | :"P‘-= expli—~0n P l
C 15 g positive constant

Using the Borel-Cantelli lernma it is easy to coe the following coroflary

Coroflary 2.1. Under the assumptions stated in Theorem 3 foi =1 = ot1) completely asn — ~

J.Z Srrongly mixing case

Suppose | X 2115 a R-valued, stric tly station
generated by (X ~tiand by (X1 - ¢

:J1"’1f|fr' T -f1el¢

a1y process with marginal density f Let M’ . and M
£ nj respectively, Then X, is a strong mixing process if

aini = sup sup|{|P(A ~ B) PIAYPIRY A e MY BeM' 100 asn -+ x

Under very general dependence assumptions (that includes strong mixing condition ), Lardjane (2007
MSE of 3

has shown that 11
KDE [, 1(y) goes to zero at the rate similar (up to a lo

garithm) to the rate of convergence of the MSE under ;
assumptions for k equal to a multiple of (logn/n)' * (see page 213, Lardjane (2007 1). 50 under strong mixing condition w
use H, = [c, (log(n) 'm)' 5 ¢ (log(n) /m)’ 5],where 1. ¢, are as defined earlier.
Lemma 3. [er (v |, _, . be a strongly mIXing process with marginal density f, satisfying |If'" || = ~. Let w(n) < expi—2a
where ¢ > 0.1f I, = [a(log(n) /m)"/5. bilog(n)/m"/5] where 0 < a < b, then under Assumption 1 we ses that

p ( sup [f, 4 (x) = f(x)| > s) = 0((n/log(n))"* exp (—(n/log(n))3'sfsz)),

C 15 a positive constant free of x.

lemma4. Let (X.}),_15 bea strongly mixing process, with the common marginal density f satisfyi
@(ni < exp(—2cn), where ¢ > 0. Then

PIQ-Q°| > n/4) = O(Vnexp(=vns)), i=1.3,

= 15 & positive constant.

ng Assumption 1. Let

The above lemma follows from inequality (

3.7)in page 658 in Wangetal. (2011 ). The proof is given in
Repeating the arguments used in the pr

the appendix.
oof of Theorem 1, and using the Lemmas 3 and 4 we g

et the following theorem
eorem 3. Ler (X, ), 1.2

(n) < exp(—2cn) where ¢

Pi

be a strongly mixing process with

marginal density f, satisfying Assumprion 2 and I
> 0. Then under Assumption 1

. Let
Lf—.. U’X} —f{x)I >€) =10 (_‘\/HEXD(-C{I‘I/ Iog(n))mez}) )
s @ positive constant free of x.

our Theorem 2 to the strong muxing case, where the mixing

ankful to the reviewer for suggesting this

mmas. Let (X, | be g strong

ly mixing stationary process with marginal density [ satisfying |If)|. (TR
rsomey - (and If (x)]

= o(l)as |x| — oo, The mixing coefficient « sansfies «e(n
LK be a continuoys density satisfying Assumption 1. For any h e

L JIX7foodx <
) = expi—2cm), for some ¢ ~ 0. Further

a ('l’liléiﬂ)l ' : b(‘-*‘{i}'ﬂ)t <'] ande > 0,3C > 0such that

jLhalrs 4,
& A n 5 )
PUSsn = Efam)ll > €) = 0 ( ) exp-Cvne?) | asn - ~
log(n)

the above lemmgz hisanonrandom bandwidth. The next lemmais an extension of [ emma 2 to astrongly mixing stationary
‘ocess,
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vith marginal density ] — expl—2cny, for some ¢ 0, Fipp

Lemma 6. Let [X.] be a strongly muxing stahonary process v et o safisfies o (M)
y | ¥1 e[ '
for some y = Oand [Jixi] — ol Vvas [x] = ' S
A hen a n
ler K be a contmuous density satisfyre A nption 11 1

v constants
1 | ") | und a, b, € are positive cON
|V mixing stalinonary procesy Anl i

!
on strong

Jow we state Thearem 4, which holds for a kernel estimatol based
andom bandwidth satisfying the stated condition

density [. satisfying ."lw--m_rullrrm 2. Moregy..

oo, The kernel I s a continuoy; 4,

0. let h e [citlngin,

] oc i ginil
Theorem 4. Lot [N, | be a strongly nuxing stationary process with m?;f“.- e
i [ T ixddy ~, for some y 0and |fix)] = 0 : |
I expl—2cnl. for some f

hisfving npion 1. The mixing coefficient o satisfies ur.[.”l = 0 asn — o<
Ctloginy 'my ] where ¢y, ¢ are as described in our paper. Then for every ¢ :
[EE I_ 1
- n : gt
P —fll =e)=0 - ) exp(—C/ne’)
ot log(n)

i N — 50,
C 15 a positive constant. Consequently, |If, ; — f|l — 0 almost surely asn

where (

! iti - implies t sxp(—2cn) where 0 <
We note that the condition «w(n) < Dp" implies that a(n) < exp( ] o
) 2 — log(D)/(2n). Clearly ¢ = 0 for sufficiently large n. Therefore, under the stated conditions, Theorer, 4

p < LD = 0and, _

olds for a strongly mixing sequence with ae(n) = 0(p"), where 0 < p < 1.

1al remarks,
|- Theorem 1 provides insight into the accuracy of the density estimators using the local bootstrap bandwidth sefecry;
proposed by Hazelton (1996, 1999) and Dutta (2014). Theorem 3 ensures that these estimators remain consistent eve

i1 the presence of strong mixing type dependence. .
<. Theorem 2 provides insight into the accuracy of a global density estimate in terms of the sup-norm distance. This o

* holds for the estimators obtained by the PL cross validation, the LSCV, the BCV, the SCV, the double kernel method and a
the bootstrap bandwidths by Jones et al. (1991), Cao et al. (1994), Bose and Dutta (2013). Corollary 2.1 ensures comple

uniform convergence of these estimataors,

J. The range of bandwidths H,, can be widened to L—ﬁh, m?:g] where 0 < § < 1/5, to accommodate more values (
we are thankful to Prof. |.S. Marron for this suggestion). In that case, under i.i.d. assumption, using similar calculato

as in Section 3 we get that for h € H,

PUf ix)=fix)] =€) =0 ns exp {—Cn”s"’fez))

and
- E (B42)
Pllfys =Sl =e)=0 (n " exp (-Cn“/““‘ez)).

where C is positive constant,

b I; et = strongly mixing stationary process satisfying the conditions on f and « in Theorem 4, the range ¢
ancwidths H, can be widened to [c1(log(n)/m) /=15, ca(log(ny/ny!/s- "l where 0 < § = 1/5 and (log(m/m" "~

log(ni(loglogn) = o(1) asn — oc. In that case, g < 1/5 2 gy,

(842/p
_‘tﬁg_'

Py =11l > e) = i i
Vo= I >0 =0 (_Iog(nj) ‘-‘"P(—flﬂ;’Iogtn})’f"'““r) . whereC = 0.

this condition holds for
ds for smaller valyes of y. So for the heavy-tailed densities, P(ILf,,,‘, —JIl > €) seems to convert®

Zero at a slower rate, o - i
(see Corollary 2.1), ?Q?S":;;gf;é"ﬁ oaralue of y, I, — £l - 0 completely as n - oo, underiid. assumpt’
¢ 1o effect of the tail of f on the results related to pointwise convergence ol



5. Under the extra assumption that the population variance is finite,
sample standard deviation in the boundary points of H, (we
case

one can replace the sample mterquartile vange by
are thankful to the reviewer for raising this point), n tha

PUIL . — | €)1 < 2P(|sd — sd’| n/2y 4 l'(_\up[f = r)_

where sd. sd” are the sample and the population standard deviations respectively, 0 - n - sd* /2 and

I, =[0.002sd"n ' . 2000sd*n |
Under the conditions stated m Theorems 2 and 4 and the extra assumption that [ X' f(xidx ~ Psupy, W =rl -0
converges to zero at similar rate as P(supy.s. Mfan =[] > €) and P(lsd — sd*| ~ sd*/2) = o(1)asn — . under 1.1.d

as well as strongly mixing dependence assumptions. Therefore even if IQR is replaced by sd in H,,, If, i — [l converges

as strongly mixing dependence assumptions, provided [ x/'f(x)jdx -~ ~_.

ITTQR 1s replaced by sd in the boundary points of H,, the convergence rate of P(||f . — f|l - ¢) depends on the
convergence rate of P(|sd—sd*| - 1/ 2). The later essentially depends on the convergence rate of P(|m, —ju,|
M. iz are the sample and population 2nd moments respectively and § 0, The
8 usually obtained by using a Bernstein type inequality, where the random variables are assumed to be bounded. One
can also use the wcll‘known imequality P(Jmy — pt,] = §) < E(my — 14,)° /87 Then there is no need to assume that the
random variables are bounded. But the 4th population moment is assumed to be finite, and the upper bound obtained
Is somewhat crude (as even under i.i.d, assumption E(m; — 1,)? = 0 1/1)). So to obtain the exponential convergence

rate of P(|sd — sd*| =~ 7/2) we need mare restrictive assumptions on f than what is used in Theorems 2 and 4 (viz.
Assumption 2,

in probabihity to zero under i.1.d. as well

- d), where
best possible rate of P(|n, — jt,| - 8)

Hence if sd is used, instead of IQR, more conditions are needed to obtain the similar rate of convergence of P(||f,, —

1l = €). Moreover the role ofIQRorsdinc; and c; is only to ensure that fi is scale invariant. So there seems to be ha rdly
any extra benefit of using sd instead of IQRin ¢, c,.

3. An outline of proofs

[n this final section we provide an overview of the main idea used in the proofs of all Theorems 1-4 and some important
‘emmas. The details are available with the authors.

3.1. Proof of theorems

oof of Theorems 1 and 2. Letus first discuss the proofs of Theorems 1and 2. In these theorems we assume thatX,,

X
are 1.1.d. random variables with density f satisfying Assumption 2, We note that for any random bandwidth h
M =P, ;0 = f0)] > €) < P (h gh)+P (Fi0 =501 > e, he r.,) (3.1
nd
w=PWi= > 0 <P(Re)+p (I -l > e, he ) (32
here J, = L—f— I]L:] where g = I%’ET—S’]E and b = WEHUDE o0 o ocitive constant as in Assumption 2. and let
< IQR". The definition (1. 1) implies that h € H,. Therefore it is easy to verify that
P (h £1h) <2P(Q — Q]| > n/4) + 2P(|Q; — Q| > n/4). (3.3)
Iso we see that
P (Lf,,l,-ltx} —f(x)| > €. he .f,,) <P (sup {fn,,,{x} —~ f ()| > e) (3.4}
hely,
P(i =11 > e hen) <p (sup Vw51 > e). - (35)
hel,

€ inequalities (3.1)to (3.5) imply that the convergence rates of ry,
4)

3 and r,, depend on the rate at which PUQ - Q| ~
Uan(X) = f(x)] > €) and P(supyey, fun —f]|

» 1=, 3'P(5UPhe:,, | > €) converge to zero, as n is increased.
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Proofs of Theorems 3 and 4. To prove Theorems 3 and ;

nal density [ satisfving Assumption 2 and the nnxnu*,u_mrfu Ta
: mains as 1t1s.

1N
V/5
b ( log(m) ) The choice O

faandbre

vase we define |, i ( login )
_ ; ; E v hold i s
The inequalities (3.1)to (3.5) do not depend on any dependence agamnptwn._nul th{e},r hold uéthe presence ofy,.
ain we see that the convergence rates of F'in. F2n epend on the . |
o Wan — £l = €) converge to zero L"”
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: _¢) and P(sUPy

Q@ = [.ll T A 1. 3, Psupy, Iy Iifll_h"\‘} o _r'(,\fll

under strongly mixing dependence asstmption.
Under strongly mixing dependence assumption the converge

] oy H i
Lemma 4. Under the same dependence assumption, Assumption /
. ¢) are obtain

of J'“|.\LID;_., Iy U,‘:_r.l,\\ — [(X)] = €) and P(suppey, ||ﬁ|.h = r"
proofs of the Theorems 3 and 4 follow from the inequalities (3.1)to (3.5)

nce rates of P(1Q — Q1 = /4. i =13y
and some extra assu mptions on f the ””Wt“]l-: 1 ET
ed in Lemmas 3 and 6, respectively Ils_.vr...
and Lemmas 3, 4and 6. [ I+ Herefy,

3.2. Proof of lemmas
hich are used in the proofs of Theorems 1-4. Lemma 5
) 2 dTe |t

and 6 w
ed and proved below. The proof |,

Let us now discuss the proofs of Lemmas 1-3
depend on one inequality stat

prove Lemma 6. The proofs of Lemmas 1-3 and 6

discussed briefly.
G' . 5 4 iti i
iven ¢ ~ 0. Under the Assumption 1 on the kernel K, one can partition the interval I, into k(n) non-overl
~overlapping

intervals {I,.i = 1. ... k(n)} each of length &, such that
sup (= Funll < €/2. 1=1,.... k(n),

where h; 1s a boundati vy point of the sub-interval !m', i=1,... k(i’l)
Proof. Let ], = l— b ' n =1 T t (.]ll 1, || su 7K 4 BN

l n q1/5* fifs and g (h) K(th). Unde ASSLIIT][J i p I 1
Therefore under this assuulptinn h 1 ! ” ﬂl‘ <EZ<C 1 IU( }[ are finite num

d 1
—g.(h) = —
dh = p2 l”K” + _£S£W|ZK(1)(Z)|} <Cn*’ Yheland — oo <z < o0

Therefi ) =
ore, [gA{h) gz(hr” E (h hl) Suphehq I%gz(h)l E C‘n2/5(h e h) <7z
1/ oo < OQ.

Givene = = i
ivene > 0,letd, = =n~2/> Thenforhely, i=1,. k(n)

‘. ‘. :I

Fon) = fon )] < + 'lK (ﬂ S e
n&=|h h h_;( h; )‘
] n :

=5 Z ng"a‘!}' (h) — gx—x]-(hi'll <€/2, Vx

n
J=1

A

= Won=fanll < ¢/2, i=1,,.. k(n)

< V i li' t

We note that |
at in the abov i
¢ ment i
1oned proof no dependence assu
s &
ption is used. Moreover, if [, = [a( "

ie

b( loging ] )
1] " {36 | 3
based 0|J1 astr " PIWEd Wusingds = & (I_lﬂ”_} ;
strongly mixing stationary procese. il ) - Therefore (3,6) i o
y process, with 6) continues to hold even for a density esti”

appropri i
PPropriate modification inl, and §
n-

P
roof the Lemmas land 2. Given ¢ -

(hivi=1,. 4 _ - 0, we partition he j
- k(n)} each of length 5, = -2/ heinterval f, = [4*— b_|; ——
5P, where € = (11 WS 78 mtok(n)non—overlappmgSU
= K0+ sup___ 12K 2)). Clearly k() muitiplf"ﬂ
X <7 <00 z)|. Clearly k(n) 1s 2
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e following mequalities are tovial

,.(“,l‘”_“._“. [ (x| 0 ] J'( :n.lrx {H,,_.,_n] [l + osap |f, nixy —f, ,,Ii_\'.|= i )
Wl 1= L1k} he'l.

"(.‘"""" = ) “'(r"."'.‘..,. Wan, —SI+ sup (ifyn :,..,u’ )

hel

U (L0)on the nght side of the above inequalities we get the following inecualities

kiny
P(suptln - fo ) D P (o0 — f0) - e/2)
th |_r !
kiny

' (\"” When = L1 e ) \‘_:P [||L._J., [l -« f')) '
" 4 =1
Fach hy o 1. Hence s amulaple ofn V) 1 = 1. k(). Therefore under the assumption ||V = n~o, AN, = 1 such that
[Elfyn )=l ~ ¢/4, ¥ N, i=12, ... k@m
Hencelorn - N,
ki 2 F
P (m,;u.._mn [ r) <>p (lfn.n.{x.) = Elfun, (011 = (-/4) (Bt
ety i=1
kiny :: .
(\up Wan =S > t) < ZP (”ﬁn.m = Elfun Il > “/4)' s
: i=1

“ssumption | covers the conditions on K in Condition 6 in Theorem 3.1.5, in page 183 in Rao (1983). Using inequality (27
I page 184 1n Rao (1983) we get the following inequality:

P ([f,, n () = ELfy. 4 (0)]] > 6/4) < 2exp(—Cinhie?/2) < 2 exp(—Cn*°e?),

here ;. C are positive constants free of x. Substituting the above inequality on the right side of (3.7), and using the fact
hat k(n) is amultiple of n'®> we get Lemma 1. 0O

To prove Lemma 2, we see that nh;/log(n) — oo, i = 1,...,k(n), asn — o0. So each h; satisfies the Condition 10
n the bandwidth) in page 185 of Rao (1983). Assumption 1 covers the Condition 9 (on the kernel) in page 185 of Rac
983). Further assumptions on f stated in Lemma 2 also cover all the conditions stated in Theorem 3.1.7 in Rao (1983)
ages 184-185),

Therefore, under the conditions stated in Lemma 2, using inequality (49) in the proof of Theorem 3.1.7 in Rao (1983
ages 184 and 188),

P (Ifun, = EGui)I = €/4) < exp(=Conhy) + 2(1 + 2ay/by) exp(—Cyhy),

3

vhe = .
re; = e, a, )T

241/

. by = €hcy, G = €*/(cs + ce€). ¢i, i = 2,...,6,are positive constants. Clearly a, /b, is a

ultiple of h, "and eachan™'/® < hy, fori =1, ... ., k(n). Therefore we have the following equation:

P (Wn, — EGun) > €/4) =0 (nﬂ}‘“ e,{p{_CGznws)) ‘

here C is a positive constant. Substituting the above inequality on the right side of (3.8), and using the fact that k(n) is a
ultiple of n'/> we get Lemma 2. [

n n

1/5 1/5
of the Lemmas 3 and 6. We partition [, = [a( Jﬂm) p b('—"gi”) ] into k(n) non-overlapping sub-intervals (I, 1 =

2/5 1/5 . "
. k(n)} each of length 8, = e (Iug:ni) . Clearly k(n) is a multiple of (I m}) . We note that the inequalities (3.7)

d (3.8) are obtained without any dependence assumption, and that they continue to hold for the kernel estimators based
a strongly mixing stationary process with density f. Hence to prove Lemma 3 we have to obtain the convergence rate

P (Un n (X) — Elf,,, n(X)]| > ('f4) under strongly mixing dependence assumption, where h; € I, i = 1,..., k(n). The
tuments are as follows.
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where € is positive constant free of x. Recall that a n -
3
g

. C'nhe? n €2, ¥n> N..
and C ~ 0 suc : ; = ( ')t' o
C > 0 such that, AKZ12Kyeh, log(m(loglogm) = login)

Therefore asn — oo
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P(Uin 0 = Eun )] > e/4) = 0 (exp (_C (log(ﬂ)) 62)) '

Substituting (3.9) on the right hand side of inequality (3.7), and using the fact that k(n) is a multiple of (n/log(n),'*
lemma3. O

To prove Lemma 6 we recall that inequality (3.8)

\'-'ith
& 1/5 1/5
- [ﬂ (loa(nJ) b (!og(n)) :I
n n

From (3.8) we see that to prove Lemma 6 we have to obtain the rate at which P

(W = ElGas 11 > €/4). where
..... k(n) and k(n) is multiple of (n/log(n))"/>. Therefore we see that Lemma 6 follows from inequality (3.8} Is
and the fact that k(n) is multiple of (n/log(n))'5. O

Proof of Lemma 5.

continues to hold under the strong mixing type dependence a5, -

P(lfor = Ehan)] > €) < P (;",“p @) = EGu(y))] > e) +p ( sup () — EGya(y))| > e)
=dn l¥l|=>ay ‘
where a, = (16K,Ks/¢h)"¥ and Ky

= 2" [ IX]"f (x)dx. Let b, —
[2a,/b,] + 1 compact intervals, say Jn 1,
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. “+Jnk,- 1X] denotes the largest inte . s
page 186 in Rao (1983) we can show that ! g ger < X. Now repeating the arg
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Lemma 5 follows from (3. 10)-(3.12)

Acknowledgments

The a s are thank 2 .
” ”lill [T::‘i‘ﬂ : ]'K ”’;‘"'\T"] to Prof. |.S. Marron for his detailed remarks on several issues related to density estimation
v ¢ ] 5 B eIt L3 v 3 I [
¢ are tul o the esteemed reviewer for the detailed review w and the kind suggestions which lead to significant
improvement of the manuscript. | ‘
The first author research supported by UGC minor research project F. No. 39-938/2010 (SR,

References

Fose AL Dutta, 5. 2013 Density estimation using bootstrap bandwidth selector, Statist, Probab, Lett, 81, 245-256
Howman, AW 1984, An alternative method of cross-validation for smoothing of density estimates. Biometrika 71, 353- 360,
R Cuevas, &4 Gonzlez-Manteiga, W, 1994, A comparative study of several smoothing methods in density estimation. Comput, Statist. Data An

Ll

i b
eviove L 198 The double kernel method in density estimation. Ann. Inst. Henri Poincare 25, 533-580.

Clta S 2004 Local smoothing using the bootstrap. Comum, Statist, Simulation Comput. 43 (2), 378-389,
mmahl U Mason: DL 2005 Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 33, 1380- 140
fibbema [DF - Hermans, |, Van Der Broek, K., 1974, A stepwise discrimination analysis program using density estimation. [n. Bruckmann, G Ed
Jompstat: P oceedings in Computational Statistics, pp. 101-110.
b P Marron. Ls. Park, B.U, 1992, Smoothed cross-validation. Probab. Theory Related Fields 92, 1-20.
azclton Mo 1896, Bandwidth selection for local density estimators. ] Scand. Statist. 23, 221-232.
lazelton, M. 1998 An opnimal local bandwidth selector for kernel density estimation. J. Statist. Plann. Inference 77, 37-50.
ones MG Marron, LS. Park, B, 1991, A simple root n bandwidth selector. Ann. Statist. 19, 1919-1932.
AN, Pickands, |, 1881 Weak convergence and efficient estimation at a point. Ann. Statist. 9, 1066-1076.
ne S, 2007 Nenparametric density estimation for nonmixing approximable stochastic processes. Stat. Inference Stoch. Process. 10, 2059 za

‘orlevede BoPeligrad Mo Rio, E., 2009. Bernstein inequality and moderate deviations under strang mixing conditions. IMS Collect. Hizh Dimen

Lneger,

e ﬁc‘\

Vo S D=

telmiczuk, | 1290 Remark concerning data-dependent bandwidth choice in density estimation. Statist. Probab. Lett. 9, 27-33.
ark, BU. Marron, [.5., 1990. Comparison of data-driven bandwidth selectors. ]. Amer. Statist. Assoc. 85, 66-72.
larzen, E. 1962. On estlma[ion of a probability density function and mode. Ann. Math. Statist. 33, 1065-1076.
20, B.LS.P. 1983 Nanparametric Functional Estimation. Academic Press, New Yorlk.

senblart, M., 1956. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27, 832-835.
att DWW, Terrell, G.R., 1987, Biased and unbiased cross-validation in density estimation. ]. Amer. Statist, Assoc. 82, 1131-1146.
rfling, R 1980. Approximation Theorems of Mathematical Statistics. Wiley, New York.
one. CJ.. 1984 An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist. 12, 1285-1297

_agzlan-d", M.. 1994 Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22, 28-76. )
ang ¥ Hu, 5. Yang W.2011. The Bahadur representation for sample quantiles under strongly mixing sequence. |. Statist. Plann. Inference 141 602

|€-*£j..D.-,I\-'\’E'i@.|.JaCh. FL 2010. Consistency of the kernel density estimator—a survey, Statist. Papers 53, 1-21.



| - ionsin statistics - Simulation ang
Communica
Computation

omepage: http://www tap
ininE}JUL’_r_rf_I.i—- E

e ———

||'rﬂ|. &
| ISSN: 0361-0918 (Print) ‘qiz_'tml : --

Local Smoothing for Kernel Distribution R

Estimation

Santanu Dutta

To cite this article: Santanu Dutta (2015) Lo_cal Smpothmg é(z)r Ke:;aetlfi:?‘e-, i
Estimation, Communications in Statistics - Simulation an mp ion, 44

10.1080/03610918.2013.795591
To link to this article: http://dx.doi.org/10.1080/03610918.2013.795591

@ Accepted author version posted online: 02
Jun 2014,
Published online: 02 jun 2014.

\
@ Submit your article to this journal 2

III'I Article views: 86

e
h
E’ View related articles (2

pae S

/ View Crossmark data (2

_\

-_—



Cinmmuns vty Nt

(_-) Taylor & Francis

Cuopwvnghi Tavlior & | s Canonip, 11
ISSh 1) 1 (AR | L1 ] vinlin

WOT 10 0RO IR0 8 2

Iocal Smoothing for Kernel Distribution
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the problem of handwidth selection Jor kerel-based estimation of the diviribution
function (cdf) ata given point iy « onsidered. With appropriate bandwidth, o ke rmel-besed
extimator (kdf) is known to outperform the empirical distribution funetion However,
such a bandwidth is unknown in practice. In pointwise estimation, the appropricte
bandwidth depends on the pointwhere the function is estimated. The existing smaothin e
methods use one commaon heandwidih to estimate the cdf. The accuracy of the resulting
cstimates varies substantially depending on the cdf and the point where it iy extimated. We
Propose to select bandwidth by minimizing a bootstrap estimaror of the MSE of the kidf
The resulting estimator performs reliably, irrespective of where the cdf is estimated. It
I8 shown to be consistent under i.j.d. aswell as strongly mixing dependence assim ption
Tivo applications of the proposed estimator are shown in finance and seismology. We
report a dataset on the S & P Nifty index values.

Keywords Bootstrap; Distribution function estimation: Kernel-based estimator.

Mathematics Subject Classification 62G05

1. Introduction

Let X5 .o X, be n continuous random variables with common
and density /. We consider the problem of estimating F (and also
the probability of exceedance) at a given design point x,. Distribu
finds application in survival analysis (see,

distribution function F
the survival function or
tion function estimation
for instance, Swanepoel and Graan, 2005; Liu
and Yang, 2008). The estimation of F or the survival function appears as a natural problem
in several other contexts as well. For example, in climatological studies, for 3 high value
¢, the relevance of knowing the probability of occurrence of a wind speed bigger than
¢ is obvious. Similar estimation problems also arise in finance and seismology. We give
two such examples in this article. Del Rio and Estévez-Pérez (2012) contained detailed
literature review on the applications of estimation of F and related functions, such as the
probability of exceedance.

A simple nonparametric estimator of F is the empirical distribution function (we call
it F,,). The asymptotic properties of F,, are well-known (¢.0.. see Serfling, 1980). However.

wy W
i b

there are some compelling reasons for considering a kernel-based distribution lunction
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Polanski and Baker (2000) developed an iterative 1 a package kerdiest
‘ : 5 srez (2012) have developed a package kerdiest for
i bandwidih. Del Rio and Estévez-Pérez (2 o N g ‘
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Figure 1. The auto correlation function plots for the eruption duration and waiting time values of
Old Faithful data.

to work consistently under strongly mixing as well as i.i.d. assumption. We also study the
performance of the Azzalini’s (1981) estimators under similar dependence assumption.

In Section 2, we provide the definitions and the details of our proposal. The ex-
act MSE of a kernel estimator using a random bandwidth is hard to obtain. However

given F, one can approximate the MSE of a statistic by Monte-Carlo (MC) simulation. In

One dataset consists of magnitudes of 1000 Fiji earthquakes, and the other dataset contains
the annual (log) return vales of the S& P CNX Nifty, an index of the National Stock Ex-
change (NSE) in India, for 18 financial years from 1994-95 to 2011-12. While the data
on Fiji quakes are well-known and available in standard software packages such as R, the
data on the Nifty index values on the first and last trading days of each financial year
(starting in April and ending in March) are collected from the NSE Web site. These data
arc reported in our Table 3. We show that the problem of estimation of the probability of
CXceedance arise naturally in the analysis of both these datasets, and apply the proposed
methodology.

A simulation experiment is restricted 1o comparisons based on a finite number of
test distributions. So in Section 4, we prove the consistency of the estimator of F(xp)
using the proposed bandwiditl selector under i.i.d. as well as strongly mixing dependence
assumptions. We also show that the estimators using Azzalini’s (198 [) bandwidths are also
consistent under strongly mixing dependence. These results seem to be new. In general, the
simulations in Section 3 suggest the following observations.
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While the accuracy of the estimators using the existing random bandwidths can vary
substantially from one example to another, the proposed estimator seems to perform reliably
in a wide variety of examples. In the presence of autoregressive dependence, the accuracy
of all the estimators deteriorate with increase in the extent of auto-correlation. But the
proposed estimator continues to outperform the empirical estimator and compares well
with the other kernel-based estimators even in the presence of substantial autocorrelation.
The global bandwidths proposed by Altman and Leger (1995), Bowman et al. (1999),
Polanski and Baker (2000) perform reasonably while estimating F in the i
range. But these global bandwidth selectors do not appear
of F(xy), for xy in the tajl region or close (o (he boundary
the proposed estimator performs more reliably th
estimators may perform poorly if the dens
estimation point. The proposed estim

and
nter-quartile
(0 be suitable for estimation
of the support. In such cases.
an the other estimators. The existing

1y 15 not bounded in 1 neighborhood of the

ator can be used safely even in a such case.

2. Definitions and the Proposal

Let X X, be n identic; 18U
Tzl Ld“y dl\lnhuled rand - . R

: ; . ; 4hdom variableg with co ) istribution

function F. The cmpirical dislrihunun func ’ th common distrib

ton F, is defined 1« = .. _ Lo i X )
Where I(x — X;) =1 for X, < and zero orher\:fise ciedas F(ey =4 3™ | (e X,
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1
25th percentile
Stth percennile
'Sth percentile
28th percentile
Mith percennle
TSth percentile
25th percentile
Stih percentile
T5th percentile
25th percentile
Steh percenule
7Sth percentile
Sth percentile
SOth percentile
75th percentile
25th percentile
Stith percentile
75th percentile
25th percentile
S0th percentile
75th percentile
25th percentile
50th percentile
75th percentile
25th percentile
50th percentile
75th percentile
25th percentile
50th percentile
75th percentile
25th percentile
50th percentile
75th percentile
25th percentile
50th percentile
75th percentile
25th percentile
50th percentile
75th percentile
25th percentile
50th percentile
75th percentile

vy 18 the Nrst, sece

i
0169
0221
0184
0,187
0.238
0.187
0178
0.253
0.171
0,164
0.228
0. 181
0.177
(1.259
0.175
(.190)
(1.259
0.157
0.176
(.249
0.180
0.155
0.273
0.183
0.180
0.243
0.181
0.173
0.216
0.201
0.166
0.24
0.175
0.198
0.272
0.221
0.399
0.593
0.398
1.06
1.569
1.051
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Table 2

of the empr estimator and F
different random bandwidths and the optimal bandw

Azzall|
0177
0.227
0189
0.67
0239
0.190
0175
0,252
0.173
0170
.233
0,189
(. 1R()
(1.252
0.174
0.194
(1.263
1.161
0.179
.256
0.185
0.163
0.282
0.187
0.186
0.250
0.186
0.179
0.222
0.203
0.167
0.246
0.177
0.219
0.305
0.229
0.401
0.607
0.406
1.08
1.590
1061

Azzul 2

0167
11220
0183
025
046
0194
0.181
0.267
0.170
0.152
0.225
0191
0.173
0445
0177
0.1R7
0.260)
0.154
0.174
0.249
0.179
0.154
0.269
0.184
0.178
0.239
0.181
0.171
0.217
0.201
0.164
0.236
0.171
0.208
0.288
0.216
0.391
0.585
0.388
1.061
1.558
1.042

cmpr
01875
0.25
01875
01875
.25
01875
01875
0.25
01875
(11875
(1.25
0.1875
0.1875
0.25
0.1875
0.1875
.25
0.1875
0.1875
0.25
0.1875
0.1875
0.25
0.1875
0.1875
0.25
0.1875
0.1875
0.25
0.1875
0.1875
0.25
0.1875
0.225
0.312
0.238
0411
0.625
0.418
1.095
1.596
1.073

Al

0177

0,224

0N IR3

0193

0236
(194
0156
0251

0181

0160
01.248
0.1%2
016K
(1.244
0171

0,191

0.248
(.184
0.176
(1.24

(0.160
0.042
0.259
0.185
0.169
(L.236
0.184
0.172
0.276
0.185
0.157
0.262
0.148
0.201
.242
0.199
0.358
0.566
0.366
1.058
1466
1.052

rp
0174
212
1 184
0219
0.237
).220
0162
(0.254
0178
0162
N.216
0,183
0,158
0.236
0171
(186
0.236
0178
0.170
(.234
0.152
0.146
0.254
0.185
0.160
0.226
0.178
0.160
0.268
0.180
0.149
0.245
0.143
0.197
0.234
0.198
0.369
0513
0).356
0,991
1413
0977

w(xn. h) for h equal
idth in Azzalini (1981, for n
nd. or the third quartife

(Y
02
0.2
019

{)219

041

. 189

0174

f.261
01491
0171
215
0,155
n.174y
(.31
0191

(1.21

0).251
(0.1%3
0174
().241
0.179
0.17%
().253
0.183
0.171
(.24 1
0. 185
0.173

(.31
0. 188
0.161
0.258
0,178
0.191
0.239
0,189
0455
(593
(0.532
1.0
| 403
(N

1o the

100,

1
1161
[ 16
17
(158
.23
0172
0145
228
Ly
1.54
0216
01/
0151
021
(). 154
0170
Pl el
(1 166
NA
NA
NA
0161
0216
0. 168
0,150
0.213
0174
0.155
0.21
0.169
0. 1458
4 x 107
0167
0.1%9
NA
0. 190
0317
NA
0 346
nw7
NA
(1vs|

2, - B | =i :_\“__-
Filx)= F,(x, h) = - LI\ ( :

=i

A kernel-based estimator [, (xq) ol F(x)is defined as

X )
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So the MSE(M) is a functional ol the distrib
not known

Given X, .
the unknown /

ution function of Xy, viz. F. In practice, F i

o+ @ bootstrap approximation to MSE (1) can be defined by replacing
by the empinical distribution function F, . in the right-hand side of (2.1)
We define a bootstrap MSE estimator MSE*(h) as follows

MSE‘in= |1 ¥ K2 {(xo = X)Ll = AR, ma-‘] + [ Folxo. Ity — F, )] (2.2)

ni|n ‘—]'

In terms of re-sampling the above bootstrap proposal can be interpreted as a re-sampling

scheme where cach re-sample is generated by simple random sampling (with replacement)

from the empirical distribution. In practice, no re-sampling is required to implement our
proposal.

[t is well known that an optimum h, asymptotically minimizing the MSE(h), is a
multiple of 7'/ (see, for instance, Azzalini, 1981 Jin and Shao, 1999). Therefore, without
loss in generality, we restrict the search for an optimum /1 in a compact interval 7, with the
boundary points equal to some multiple of n='/3, Let

h = argmin,c; MSE*(h), where L =[e\n™'3, ¢un~113, (2.3)

The boundary points of 1, are chosen to be scale-invariant bandwidths. We choose ¢, o)
in such a way that for 4 € 1, log,,(h) varies over a broad range. From Azzalini (1981) we
see that for a broad class of distributions, the multiplier of n~!/3 in the optimal bandwidth
varies between o to 20, when x; is a point in the right tail of F. If x; is not in the long tail,

0.5an~"/3 is the more appropriate value of A. o denotes the standard deviation. Motivated

by these observations we use ¢; = 0.26 and ¢1 =26, where & is the sample standard
deviation.

The survival function or the risk function or the probability of exceedence. at x,. is
defined as

S(Ig) =1- F(x[]).

Therefore given an estimator F (x9) of F(xy), a natural estimator 3’(,\'0) of S(xy) equals
1—F(x). Clearly F(xg) and S(xq) have the same MSE. Consequently, S(vy) = 1 — Fu(xo. h)
is the proposed estimator of $(xq), where I is as defined in (2.3).

3. Simulation and Data Analysis

We compare the values of n times the MSE of the empirical estimator F,(x,) with that of
F\(xo. h) using /1 equal to /i in (2.3), and the random bandwidths proposed by Azzalini
(1981), Altman and Leger (1995), Bowman et al. (1998) and Polanski and Baker (2000)
based on i.i.d. observations from 11 test distributions and for X( equal to the Sth, 25th,
50th, 75th and 95th percentiles. While the Sth and the 95th percentile values are in the tail
region, the other percentile values are in the inter quartile range. We know that the optimal
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Based on the above observations. we recommended fﬂ,

estimator F (v, /) does not deteriorate drastically M comparison to the other
cstimators, for any choice of F or v,
i In the presence of auto-regressive dependence. the accuracy of all the cstimators

detenorate as ¢ 1s mcreased. Even in the presence of substantial auto regressive

dependence, the proposed estimator outperforms the cmpimical estimator and Lome-

pares well wath the other kernel-based estimators, especially while estimating Fin

to the boundary of the support (see Tahle 1)

4 From Table I we see that the MSE of the proposcd estimator ompares well with
the MSE of F, (1. M) based on the ideal bandwidth I for v the tal region
and also in the presence of substantial autoregressive dependence. In fact for 15
combinations of F and v, in Table 1. the MSE of the g
or equal to that for the estimator hased on /

S The cross-validation method by Bowman
andinmostof the examples its MSE is |
and the kermel-based e

the tail region or at a point close

woposed estimator is less than
opt -

ctal (1998) 15 computationally expensive
arger than the MSE of the empirical estimator
stmators using h equal to /1 in (2.3) and Azzall|

(xq, f;) for estimating F(.xg). espe-

cially when X is a point in the tail region or close to the boundary of the support. Unlike
the other kernel-based estimators, it can used salely even if f is not bounded at x,,.

£

8]

Analysis of Real Data

|. Fiji earthquake magnitude. A well-known dataset consists of observations on
1000 earthquakes in Fiji since 1964. This dataset is available in the package “quakes™
in the software R for statistical computing. Quakes of magnitude up to 4.9 on Richter
Scale are considered as slight and are negligible (see classification of quakes in
ht{p:r’;’www.imd.gov.im’section;’seismofstaticiearthquake-tenninology.htm)‘ Soitis
of natural interest to estimate the probability of occurrence of an earthquake of
magnitude exceeding 5 on Richter scale. For the Fiji data, the empirical estimate of
this probability of exceedance equals 0.14.

However, the kernel-based estimate of this probability equals 0.176 for /2 equal to
hin (2.3). The kernel-based estimates using the other random bandwidths mentioned
above are also similar. They vary in the range 0.175-0.177. So the kernel-base
methods assign more probability than the empirical distribution (o the event of
occurrence of a quake of magnitude more than 5 in Fiji.

Since the estimator using the proposed bandwidth / in (2.3) seems to perform

reliably, especially in estimating extreme probabilities, we conclude that the chance
of an carthquake of magnitude exceeding 5 in Fiji is between 17 and 18%.
S & P NIFTY annual return. The S& P CNX Nifty is a well diversitied 50 stock
index accounting for 22 sectors of the Indian economy. It is used for 2 variety of
purposes such as benchmarking fund portfolios (see www.nseindia.com for details).
For investors in the Indian equity market, the relevance of knowing the chunce of
annual return of this index exceeding some high value (say 10% ) is obvious. In
India, a financial year starts on | April and ends on the 31 March of the next year. In
Table 3, we report the closing values of the Nifty index on the first trading and the
last trading days for the 18 consecutive financial years from 1994-95 10 2011-12
(source: htp://www.nseindia.com/products/content/equities/indices).
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Figure 2. Plot of acf for the NIFTY annual log return values from 1994-95 to 2011-20]2.

The annual log return for a financial year is equal to ic logarithm of the ratio of th.
index values on the last and first trading days of that financial year. .We caICL{Ia[e [he“m"Uk[
log return values for the 18 yr. In Fig. 2, we plot the auto correlation function (acf) based
on these log return values. _

There seems to be substantial first-order autoregressive dependence (see Fig. 2). The
cmpirical estimate of the probability of the annual log return exceedjng 10% equals 0.278.
The kernel-based estimates of this probability of exceedance usin g h and Azzalini's band-
widths vary between 0.291 and 0.322. From simulations we see that the proposed estimator
performs slightly better than the empirical estimator under substantial auto regressive de-
pendence. So we conclude the chance that the annual Nifty log return exceeds 10% is close
Lo 0.30),

We also compute the chance that the log annual return is less than —0.10, ie., an
annual loss of more than 10%; The empirical estimate of this probability is 0. 11, and the
Ef'f_”‘ffr”ha“d‘ estimate (”f“f"g h) of the same is close to 0,12, So the chance of the annual
Nifty qu} return exceeding 10% seems to be much larger than the chance of a loss (in lo
scale) of 10% or more, ' ¥

4. Asymptotic Properties

Leth=nhix, . , , _
= Cm_m\fﬁj Id-“--i- L:Y ”.J :e a Ild!].d(]l]? bandwidth (i e, 4 function of the data) and F(xo, h) be
of F(y, If:r) for }%‘ ’ n}- based estimator of F(x0). In this section, we prove the consistency

xg. h), equal to the proposed bandwidp, hin (2.3), and the random b-mdwidlh_\‘

In Azzalini (1981) under i
Ad.and stro IXi iti .
theorems. ngly MiXing conditions, We have the following
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4.1 iid Case

Let K be a distribution function with density kK Let X, X beiid

I'heorem 4.1,
|

sandom variables with distribution function ¥ and density | Ifh 0. completely/

almost surely/ in probabiling Fivg, h)y — F(xg), ompletely/elmost surelv/in prababilin
I'he tollowimg corollary 1s immediate

Corollary 4.1._ Under the conditions stated in Theorem 4.1, [ x’d F(x) — ~ and for
h = ¢dn oy converges almost surely to F(xy), where ¢ is a positive constant and
3 18 the mmpfr' mm.hmf.«h'\'mnun_

0.5 and « L3 corvespond 1o the random bandwidths proposed by Azzalini
(JUNT) Hence under the conditions in Theorem 4.1 ane I v F( X) = oo, the kernel-based

extimators of F(xa) proposed by Azzalini (1981) are strongly consistent,
Proof of Theorem 4.1, 1t is casy (o see that for any arbitrary € = (),
P (IFu(xo. ) — F(xg)l > €) < P(J > ),

where J = [ [fu(x, h) = f(x)ldx, fu(x,h) = =30k ((y — X;)/h) and k is the density
runcuion corresponding to the distribution function K.

Theorem [ in Devroye and Gyorfi (1985), chapter 6, p. 148, states that if f,(-, /1) isaker-
nel density estimator using a random bandwidth & such that i + ;l,,—l — 0, completely/almost
surely/in probability, J — 0 completely/almost surely/in probability, for any density f on
the real line. Hence our Theorem 4.1 is a direct consequence of the Theorem 1 in Devroye
and Gyorfi (1985), chap. 6, p. 148.

This completes the proof. O

Next we obtain an asymptotic property of the proposed random bandwidth / in (2.3).

Lemma 4.1. Ler X,. ...., X, be i.i.d. random variables with distribution function F, sar-

isfving [ x*dF(x) < 0o. Then h+ ”’f! — 0 almost surely.

Proof.  From the definition of i we see that

1 1 |

S== gl
n?3 T gl T oen?s

en ' < h <™ and
where ¢;. ¢, are constant multiples of the sample standard deviation. So under the stated
conditions, ¢y, ¢> converge (almost surely) to positive constants as n — 0.

Using the above Lemma and Theorem 4.1 we get the following Theorem.

Theorem 4.2. et K be a distribution function with density k. Let X, ..., X,, be i.i.d.
random variables with distribution function F and | x*dF(x) < 00. Then for h = in
(2.3)

Fy(xqg, h) — F(xy) almost surely, as n — 00,
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ntm (logn) )
1 = mi(n) withm

Assumption 4.1.
ber 3 and for some sequence of integers 7
, . 2 2 in Chapter 6 in Devroye : -

The next Lemma is an extension of the Lemma 2 in Chapter oye and Gyorf
(1983) 1o the case of strongly mixing dependence.
Lemma 4.2. Ler K be any density function. Let us consider a sequence of interyq),
~2(log n)~' — oo. Then under Assumptioy |

H, = [h'. h"] such that h' = o(1) and nh"m

for everve > 0

P SUpr};a(y. h) — f()ldy > €] = o(l).
heH,

The proof of the above lemma is similar to the proof of the Lemma 2 in Chapter 6 in
Devroye and Gyorfi (1985). The proof is available in Dutta (2012b), and can be obtained

from the author.
Theorem 4.3. Ler K be a distribution function with density k. Let {X,, 1 € Z) be ¢
strongly mixing stationary process with marginal distribution function F and densiry f

Suppose that Assumption 1 holds. If i + 221080 : e e g
probability. g olds. If h + =—72= — Oin probability, F(xo, h) — F(x,) in

Proof. Forany € > 0,

P(IFCxo. 1)~ Fxo)| > €) < P ( / BBy = f)| dy > e). @)

Repeating the arguments in the proof of Theorem | in Chapter 6 of De dG
vroye and Gy-

orfi (1985) p. 159 ' ;
p - we see that for any random bandwidth h satisfying i + m?loz(n) _, )
nh

(in pr ili o o iy i
probability) there exists a sequence of H, = [h’ h”] where /" .
ny iy re — 0(1 300
" Y om? logn)

asn — ocand

P (/_w [fy, iy - f)|dy > 6) <op (fz 5, m? log(n) )
= B ST e
nh

+P (s f
bLlp/[f[_v‘h)af(y)[d_v > €

heH,
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Therefore under the assumption / .L ol 1y tin probability ) Theorem 4 3 44 4
consequence ol Lemma 4
Remark 4.1.  Let [X,),.7 be a stationary. ergodic process such that F| X < Bitkhofy
. p . ARG n-1 o
ergodic theorem ensures that the average of 3~ o Xvoo/n converges almost surely to
A stationary strongly mixing process is a stationary ergodic proces:

FiX,)asn et
(scc Rieders. 1993) Hence ol (X, 1 € Z) be a strongly mixing stationary process

marginal distriibution function F and [ v d F(x) ~0. the standard deviation of X
converges (almost surely) to the standard deviation of the marginal distribution of ¥

vith
v

I'he tollowing corollary is immediate

Suppose thar the conditions stated in Theorem 4.3 hold Moreaver

Corollary 4.2
173 v pl T
- Then, F(xqg, h) converges almost surely to F(x,). where

VdF(v) < ooandh = ¢n

c 18 a posinve constant and 6 ix the sample standard deviation,

The above corollary implies that estimators using the random bandwidths proposed by
Azzalimi (1981) remain consistent under the strongly mixing dependence assumption. Now
we prove the consistency of our estimator under such dependence assumption.

Using arguments as in the proof of Lemma 4.1 and Remark 1 we have the following

Lemma.
Lemma 4.3. Let (X,, 1 € Z} is a strongly mixing stationary process with marginul
distriburion function F and [ x*d F(x) < oco. Suppose that Assumption 1 holds. Then h —

=% — 0in probability.

nh

Lemma 4.3 is an extension of Lemma 4.1 from i.i.d. to strongly mixing dependence
assumption. A direct consequence of the above Lemma and Theorem 4.3 is the following

Theorem.
Theorem 4.4. Let {X,. t € Z} is a strongly mixing stationary process with marging!

distribution function F and f x2dF(x) < oc. Suppose that Assumption | holds. Then for
h=hin(2.3) F,(xy, h) converges in probability to F(xy) as n — oc.

Theorem 4.4 ensures consistency of the estimator using i = h, in (2.3), in the presence

of strongly mixing dependence.
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BANDWIDTH SELECTION FOR KERNEL BASED INTERVAL ESTIMATION OF A DENSITY

SANTANU DuTTA

Abstract

We propose a bandwidth selection method for kernel b
point. with an aim to minimize the cover

estimate of the coverage error. The

ased interval estimation of
age error. The bandwidth js chosen by mi
proposed algorithm s
based interval estimation of density.

adensity at a design
nimizing a bootstrap
eems Lo be the firs| bandwidth selector for kernel

I INTRODUCTION

We consider the problem of construction

of confidence interval for f(zo), where f is the unknown
density generating the given data and -

0 s a given design point. A density function may be arbitrarily
specified at a point . This technical difficulty is overcome by assuming that f is continuous.

One of the most well known estimators of f is a kernel density estimator (KDE)

Let Xy...... X, be independent and identically distributed random variables wi
I1-). The kernel density estimator of [ based on the kernel K (-)

defined as follows.

th an unknown density
and bandwidth i, = /., is defined as

T

fn(y)zf(y,hh%ZK('U_,lXi), (L1)

=

where h — 0and nh — coasn — oo, The problem of data based selec

tion of A for estimating f () using
[ has been well studied. See for instance, Chan et al, (2010), Dutta (2

012) among most recent.

In contrast, far less seems to be known regarding the choice of  for constructing a confidence interval
for f(zq) using f,, (z0). For instance, Chan et at. (2010) have mentioned that there seems to be no automatic
method for practical interval estimation for f(zo) available in the literature. From the si
Hall (1992) we see that the bandwidth which is ap i
interval construction is not easy to determine. No data based method for selecting such an h was suggested
by the author. Chen (1996) proposed empirical likelihood confidence intervals for density estimation. but
again with no bandwidth selection method was provided. Fiorio (2004) discussed tWO programs, viz.
ciker” and “bsciker” in Stata, to compute asymptotic and bootstrap confidence intervals for kernel
estimation. However these programs assume that the search for the correct bandwidth has been performed
beforehand (see page 173 in Fiorio (2004)). Therefore these algorithms cannot be used for determining the
dppropriate amount of smoothin g for kernel interval estimation.

as-

density

A kernel based confidence interval for J () crucially depends on the approximations of the quantiles
of the sampling distribution of § = (fn(20) = E(f(0))/6 and the bias b = Tu(xo) = f(xy), where 4 is

an estimated standard deviation of Ju(zp). The bias b is not negligible even for a bandwidth minimizing the

“Mathematical Science Dept.. Tezpur University Napaam:784(28, Tezpur, Assam, INDIA, e-mail: tezpurl 976 @ gmail.com,

. Research supported by UGC minor research project F. No. 39-938/2010 (SR).
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is a function of h.
i The (exact) coverage

Clearly I(1 - a)
(1-a).

suitable (in some ense) for [

B(l—a)= P(f(z0) € I(a))-

Hall (1992) suggested to select }, with an aim 0 minim?zc the absolute value of the coverag
CE = |8(1 — a) — 1+ a/. However B(l—-a)isa function of th

choice of h; CE has to be estimated based on X1, - : _
he C'E and it is minimized (with respect to ) for data based choice of the bandwig,
h. The details of our proposal are given in Section 2.

(), of the confidence interval using h, is hard to ¢

estimate of t
denote the proposed data based bandwidt

The exact coverage probability S(1 — a
However for any given [, we can approximate t
simulation study, in Section 3, we compute the Monte-
f and xp. We also report the average width and

~

Carlo estimates of 3(1—a)(h) for differentc:

e unknown [ So for practical dy .
X,,. Using classical bootstrap method wcp[,:_: .

he coverage probability using Monte-Carlo simuluix

the variance of the widths of the confidence interval: |

results are compared with the findings of of Hall (1992) and the results in Table 2 in Chan etal. (!

proposed two sided confidence interval using /i seems to work well (in terms of coverage probahl

average width) for sample size greater than or equal to 100.

2 OUR PROPOSAL

Given X;..... X, and /
: 1, We propose a bootstrap estimate 3* (1 — @) of the coverage prnhabili.i} ]

as follows
A (1-a)=p(1 ;
1-a) =5 (L= a)(h) = P*(f(an, h) € I*
e (falzo,h) € I*(1 — a)),
I'(l - a)=(f* -
. r ) (fn (‘Tfhh) - a (h)ﬁ‘i‘ § fx( ] Ak LN A% )
ven *\[--‘.,J\’”_‘ let ‘Yr_ —a/2) Jn Iy, l) =] (’!)fial-gj.
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(1~ o) is a function of the bandwidth /i We define a he otstrap estimator €'f5 of th
C . C coverage ecrror
as follows ¢

(' = ('FE(h) (1 — ev)(h) (1 —irx)

We minimize CEwith respect to o for data based bandwidth selection The resulting random 1 1s defined
s '1||||I\\N -
/i argming ., C'E(h). 2.1y

Tere s acompact interval with endpoi U ale irvac -
where | pomts equal to scale invariant bandwidths, which are smaller than the

_ ndth mmmizing the MISE, / sntoned carlier. H: § |
handwid ! AISE. As mentioned carlier, Hall suggested touse i — | O0oc-n V7 0 ¢
(or under smoothing (see [6]), Mouvated by this proposal we use

.i'” |f'| l-[]‘-}‘;.'” Url, ('2]_[]5»‘?“ |."r"_ 0~ ey < g < |

Hall considered a wide range of values of ¢ varying from 0.1 to 1, and showed that widelv different values
of ¢« are appropriate under different circumstances (see Table 1 in page 687 in [6]). Motivated by this. we
use 0.1 and “2 | With these choices of ¢y, ¢y, .J, covers all the under smoothing bandwidth
considered by Hall in the simulation study in [6],

The proposed two sided under smoothed bootstrap 1 — « confidence interval of f(r() is defined as

(= a)(h) = (Julwo, b) = 6(R)ta—a2, fulwo, B) = 5(h)ita)a). 42)

2.1 Some computational details.

2.1.1 Computation of i,

Given X;...... X;, and /, we compute 1, as follows.

We draw /3, bootstrap re-samples. For each re-sample we compute S*. There are 5 values of 5~
corresponding to the re-samples. Now i, is the ath sample quantile based on these B, values.

2.1.2  Computation of i,

Let X|...... X be a bootstrap re sample drawn from X, ..., Xu. Based on X7, ..... X[, we compute i, as

follows.
We generate /7, second stage re-samples from X{, ..., X}, and compute the \‘-'alues. of 5™ based on
the /3, second stage re-samples. The ath sample quantile of these B values of S** is a Monte Carlo

approximation to 7,,".

213 Computation of 3" (1 — )(h)

Given X, ... X, and h, the computation of 3*(1 — a)(h) involves the following steps.
. g ; ' : S Tom
(i) Generate [3, re-samples, each of size 1, by simple random sampling with replacement (srswr) fr

X: - Xm and compute I:: (;;,'“, h), o' (.-’.‘.J for each re-sample.

: : ‘ swr. Usi nd
(ii) From each re-sample, we further generate 132 second stage re-samples b)’j' 5:'- Using these seco
' ' A o > Proc mentioned above.
stage re-samples we compute 7, / and i]_, » bY the procedure

3



. 1 ’
J (] ) fOI each (1]
we l_fll!l[‘llll" -
slage rt__'—’nilfl'lrl es

Using | athy.n 4 and ye ) first
- v 1o the /3 y
Thert such intervals corresponding 10 f the intervals (o
) .y ¢ ervals (ot
- . number O )
The M | te of | o)(h) is equal to the
I The onte-C arlo esiimalte o /

(1)) contaiming |/ ) divided by / er E [ f

()”(‘(i j‘”f(’rl (JI’ Jf(”' « \ Jr r }l

isa two siced ¢ onfid

fone-Carlo (MC) metl

mentioned algorithm essentially imitates the ¥ he MC method we drav
) : e -
V(). for any given [ and I Int sampling method described .,

wod of (,t;;pn;_run(ﬂnw the exg,y _
random samples f,,

‘)

Remark 1. /. As mentioned earhier 111

nrobability of (1 —«
J § g " 'y 7 ? |
distribution, and for each sample we compule I(1

a)(h) is the number of the inte

o) by the re- _
. Y {re Virle .

Vi rvals contatning E (f rn) ) divided b,

1C estimate of 3(1 el distribution by s ,

/ s i . dure. replacing the
* random samples drawn. We imitate this proc edure, ref

distriburion
expectation with respect to the .

We note thart f,(rg) = E* (,f,’,(.mJ). where E* denotes the : |
) ) . - interval for fn(xg), given X
listribution. So the bootstrap version of (1 — ) is d confidence mrc’;v f-fn ,{,}mir Jm( s

: s 1 10R, @ 2 role pla ..
our method the Ist stage re-samples, drawn from the empirical distribu P

random samples drawn from the actual distribution in the MC method.
2. We use the same st stage re-samples and 2nd stage re-samples ( obtained b}.‘ re-sampling ,
stage re-sample in siep [ii] of the above algorithm) to compule [3 (1 = «)(h) for different valy,

required in a numerical minimization algorithm. This feature reduces the computational burden

3. Given a confidence interval, Monte-Carlo approximation of its coverage pr obability esseny)
volves estimating an average of a random function using Monte-Carlo simulations. From [5] . ...
much larger number of Monte-Carlo re-samples are required for approximating a bootstrap quar:;. |
timator accurately, than the same required for approximating a bootstrap estimator of the expectai
some random function. Therefore we use different number of re-samples, viz. By and B, to appr,
ihe booistrap estimators of the quantiles and the coverage probability by Monte-Carlo method,

2.2 Monte Carlo sample size for bootstrap-resampling

F_r_om [10] we see that the selection of appropriate [3; and B, are not easy problems. As a rule of thu

[5] suggested that for Monete-Carlo approximation of bootstrap moment estimators the number of bootrg

¥ C‘bde:CS SEUUI’: Ee 50[ to 200. For approximating bootstrap quantile estimators the number of bc-‘*"“

re-samples shou e at least 1()00 (see [5] ) W& s . _ OIS
) ¢ this rule of thumb, and use B, =200, B, =1

3 SIMULATION

Hall conducted simulations to study the effect of the choi :
smoothed bootstrap confidence interval /(] — Ty ce (?t
[6]). The author used }, — 1.054n=1/5 where () « -y
In his simulations f equals (o the N (0, 1) g andrlh; 1,
cqual to 0. 0.75and 1.5. T oy v &
normal distribution wl:crchf-nmgmm PN(;x.,, Uf) +(1 -_‘U]N(ﬂ'z o3
(st densities. oo o (1. 47 70 are the mean and varigne » 73) represents a two componer 7

St densities, zo = 0 is the peak of the dens; nce of the 4th mixing component. For both (¢

coverage probability 4(1 _ ty. Hall re i, B
ge prope>iity A1 — a(n), along with (he uwer'lg::woclncLl the Monte Carlo estimates of ¢

“eC and standard deviar: terval lens?

eviation of the interval €=

was observed that the covergge

_ d4ge accuracy of S

at other point. Vol the configence interva] for f at th han the &
at the peak was less than #=

I on the coverage probability of an U
‘ncd for six combinations of f and 7"
for under smoothing the density esim
WQ)N(Q- 1) + (1/2)N(3,1) density.

at v



In [1], the authors considered the problem of interval estimation of f(
» . _ . " <

density. From their simulations (page 513, in [1]1 we see th X

their 95 percent interval seem to decrease as 1 is incre

: 0). where f is a standard normal
at neither the coverage error nor the length of

ased more than two ti s. This i

_ _ . p . ) ‘ tmes. This is )erhaps due 10

(he fact that random bandwidth proposed h}’ Chan Lee and Pcllg is suitable for point estim : {fat
S ! Dle aton ol fat .

\ g w pointed o ; T S Z )
In [7]. [I]f. .ltII‘I'I\I_I p 1 out 1h\.1l nonparametric point estimation and interval estimation are different tasks
that require different degrees of smoothing. asks

In this section we study eftect of the proposed random bandwidth /; on the

the average Icnglh of I(1 — a ), for different choices of f and ro and o
mentioned choices of f and . as in [6]. Both these densities
we consider two more test densities, viz. f equal to the (1/2)N(=1,1/2) + (1/2)N(1, 1/2) density and
the gamma(2.1) density. For the (1/2)N(-1,1/2) + (1/2)N(1,1/2) density there are (wo peaks of same
heightat — 1 and L. and a trough at 0. We estimate this density at x( equal to 0 and 1. For the g-amn;la density
peak occurs al I. We estimate the height of the gamma density and equal to | and 4.474. which is the
95th percentile. To compute the Monte-Carlo estimate of the coverage probability of a confidence interval
we draw 1 random samples of a specific size from a test distribution, and compute the confidence interval

for each sample. So there are m such intervals. The Monte-Carlo estimat
equal to number of intervals containing f(x)

coverage probability and
(.05. We consider the above
are unimodal, with peak at r, = 0. In addition

e of the coverage probability is
, divided by m.. In Table 1 we use ¢, = (.1 and ey =1,

In Table 2 we report the Monte-Carlo estimates of the coverage probability, average length and vari-
ance of the confidence intervals using h = ¢1.054n~1/5, for different choices of ¢ and [ equal to the
(1/2)N(=1.1/2) + (1/2)N(1,1/2) density and the gamma(2,1) density. If the mean or the variance of the
length of the confidence interval exceeds 100, we write “large”.

In Table 1 we report the Monte-Carlo estimate of the coverage probability, average length and variance
of the proposed confidence interval 7(1 — a)(f1), in (2.2), for 10 combinations of f and zo. We compute
each estimate for n = 50 and n = 100. To compute Monte-Carlo estimate we draw m = 300 samples from
each test density. We have the following observations.

(1) The confidence interval I(1 — nf)(fr.), using the proposed random bandwidth / in (2.1), seems to
perform consistently. The coverage error, the mean and the variance of the interval length seem to
reduce as sample size is increased for all choices of f and zg.

(i1) From the simulation study in [6] and our Table 2, we see that the coverage probability and length of the
confidence intervals using h = ¢1.054n~/5. 0 < ¢ < 1, can vary widely depending on estimation
point zg and c.

(i) In contrast, the simulations in Table 1 indicate that for a given distribution the coverage accuracy of
the confidence interval using h does not seem to vary drastically with the change in x, especially for
n = 100. This is due to the fact that proposed bandwidth selector is a function of the estimation point
rg. and so the resulting bandwidth J, automatically adjusts the amount of smoothing depending on .

(iv) From the simulations in [6] we see that for f equal to the (1/2)N(0,1) + (l,:’Q)N(B.. 1) dens.ity and
¢ equal to the peak, the coverage probability of the under smoothed corllhnfience mlervf'ﬂ is poor
especially for ¢ > 0.5inh = cl.OSf}n*l/ﬁ. From our Table 2 we see that a ssmll;.n" olr)servullmn is }:1.150
true for 4 equal the trough between the two peaks of l‘llc (1/2)N(—?- 1/_-?) T+ ?lg’));\- (L, l_/.%) de‘“*"f}’-
Hall pointed out that the coverage error of confidence interval l"m: CSIIITI.QIIIOH j.al the peak is in general
higher than the same at other points, as the bias in a kernel density estimator 1s more pmm)‘unced ata
peak. We observe that the same argument is also true for xg equal to a trough. Moreo‘\-'er trom Table
2 we see that while estimating the gamma density at the peak the under smoothed confidence interval

using )i = ¢1.054n~ /5 performs poorly for every choice c.

5



() ll.“-—! -
T Interval Width

. ~qual to h and
. . i (1 — o) (h) for h equal to 7 &7
- * te Carlo esumates ol 0 A
:"]N" I: Monte — —= I (overage

Density (ro. 1) Probability | average (variance) |
| o( 0.371 (0.014)
o) ”?232; :};J 0.151 (0.002) |
(0.75. 50) 091 {LRSI(UIHR}‘
| 075, 0.958 0.239 (0.006)
”’15;]22: 0.88 0.221 (0.007)
(500 | 0935 | 0143000
| =3
(1/2)N(-1, 1/2) + (1/2)N(1. 1/2) $”i;3; :;3? ;;?2; ;ié;;j'
((}.50) 0.90 0.384 (0.033)
(1, 100) 091 | 0.295(0.005)
(7NO. D+ (/NG D | 0,50 | 0924 0.179 (0.003)
(0, 100) 0.935 0.129 (0.001)
(0.75, 50) 0.97 0.162 (0.002)
(0.75, 100) 0.962 0.117 (0.001)
(1.5, 50) 0.915 0.160 (0.012)
(1.5, 100) 0.94 0.112 (0.001) |
| gamma(2,1) (1, 50) 0.87 0.306 (0.011)
(1, 100) 0.965 0.255 (0.004)
(4.474,50) 0.84 0.081 (0.001) |
(4.474,100) 0.88 0.071 (0.002) |

However. simulations in Table 1 suggest that the proposed confidence interval /(1 — a)( h) perforn
well in estimating f at the peak as well as the trough, in terms of the coverage accuracy, especial:
for n = 100 and irrespective of f.

(v) From the simulations in [6] and our Tables 1 and 2, we see that the mean and the variance of i
length proposed confidence interval compares well with the lengths of the corresponding confidenc:
intervals using i = ¢1.056 in [6].

Final Remarks. From the above simulation study it appears that the confidence interval I(1 — a)(h
(2.2) performs well for all the test densities, especially for n = 100. Simulations in our Table 2 suggest (-
if f is a density with positive support and  is the peak, the under smoothed confidence interval for f(2
using /2 = ¢1.054 n~'/% performs poorly for all the different choices of ¢ mentioned in [6]. Tn contrast. I
coverage error or the average length of I(1 — a)(h) does not seem to vary drastically for different choi
of zy. So the proposed bandwidth selector can be recommended safely for interval estimation of flZ
especially for large sample size. ) '
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Abstract

We present a new method for automatic selection of the bandwidth matrix for a multivariate kernel
density estimate. under weak conditions. The existing multivariate methods for data based choice of a
handwidth matrix aim to minimize some L, measure of accuracy, and impose a number of assumptions
on the underlying density and its derivatives. In contrast we suggest to choose the bandwidth matrix with
an aim (o minimize a suitable L, distance, and we impose no conditions on the density function at all.

We only assume that the kernel is a probability density function, and the bandwidth matrix is positive
definite. Under these few assumptions, P([ |f, — f| > €) converges to zero exponentially as sample
size 1s increased, where f,, is the density estimate using our automatic bandwidth matrix and f is the
density. This result answers the important question that “how well does a kernel density estimate, using
our automatic bandwidth matrix, estimate the true density?” This question does not seem to have been
answered for any other multivariate bandwidth matrix selector.

Simulations and analysis of real data confirm that this new method is not merely of academic interest,
but compares well with the existing sophisticated bandwidth selectors, such as the plug-in method based
on 2 stage of pilot estimation (Duong and Hazelton (2003)).

Keywords and Phrases: Kernel density estimator, automatic bandwidth, L, distance.
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these methods impose some conditions on [ and its derivatives. Let us review some of these assumpii:
For instance, Duong and Hazelton (2003) obtained automatic plug-in bandwidth matrices, assuming tha i
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present onc example. The severnity of an earthguake depends hoth on s m:qgnmlvdr and the tkﬁh of !,;
focus (from carih .mrface .. So estimating the joint density of the depth and magnitude of earthquakes
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The chimee of I3 can be data drven as well. For instance /3 may be a //  dimensional rectangle witl
endpoints equal to the sample extremes along each coordinate direction.

We note that g is a function of the density f. which is unknown. So we propose an estimate of /
call it 1. which is defined as follows.
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!, 1 i fact a smooth bootstrap estimate of L. Let H denote the bandwidth matrix mimimizing /7,
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Remark 1. «) The concept of minimizing L°, for selecting H. has one advantage.
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bandwidth minimizing of the L°. Then L(H") is the integrated absolute error of [, [n contrasi,
denotes the minimizer of some daia based estimate of the MISE M., then M(H ;) is not the MISE of the
densiry estimate using the random bandwidth matrix Hyg. In fact MUHy ) does not have a concepli
mierpretation, excepl that it represents the value of M at H — Hyy.

) The condition K # K is a necessary condition. For K" = K, 1l — —r 1y 1y the mumumizer of L.

Consequently for K© = K, 1 is no longer automatic data based bandwidth meiriy.

From the perspective of density estimation, the important gquestion is that “how well does [, esumate
I The following Theorem provides some insight.
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The following Corollary is immediate.
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2  SIMULATION AND ANALYSIS OF REAL DATA.

Let us demonstrate our method for bivariate data. We draw samples of size 1000 from four targe,
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Estimates of the joint density of depth and magnitude of quakes in Fiji, using H and the plug-in
bandwidth matrix by Duong and Hazelton (2003) -



Propo®
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onsisting of the depths an ,
dnalvsis of real bivariate dat i 262364. Thegdata are ar\)’ai]ablj .magn?[
seismic events which occurred in 2 cube near lFI_]l smcth B o iy o i in R b

d magnitude of the q = the plug.y 4

timate the joint density of the depth an
matrix based on 2 stage of pilot estimation (Duong and Hazelton (2003)) The dept-h of the foy
carthquake can vary from 0 to 700 km from earth surface, and the minimum and maximyp, g

the 1000 quakes equal to 4 and 6.4. So we Use B equal to [0, 70(_)] & [4’ 6.4]. ) )
Conclusion. From figures 13 and 14, we see that our density estimate 1s slightly under sy
comparison to the plug-in density estimate. But both the density estimates confirm that the gy o
bimodal. The left peak represents the quakes with (depth, magnitude) in (0, 100) x ( 153, and
peak represents quakes with (depth, magnitude) in (550, 650) x (4.25, 4.75). o
lm;grati'ng the density estimates over these two regions we see that the taller left peak ¢y
gcr?::rb;;:jua; ;hoc:) r;(,g,irll;ltf;r::;:le;l(.e ;Inh; taller left Peak indit?ates that a signi.ﬁcant proportion of the F[l
surface, with magnitude 4.5 to 5 Richter. Being closer o e -

these quakes can cause more dama « » )
surface. ge than the “deep focus” quakes occurring at 550 to 700 Kn i+

a. Let us consider & data "

3 APPENDIX.

Praaj‘qf Theorem 1. Let us recal] tha L(H
where f, is a kernel density
almost surely,

)= I 15a(y) = £(y)|dy and L*(H) = [ |fuls-

estimate with a d— .
a d— variate kerne] K and bandwidth matrix H. %"

\L(H) - *( |
()| < /l.qn(y) = f(y)|dy |

o
N /'Hn(y)-f(y”d% where |

ma
he class of all 4 x ¢ positive definite ™

[ faly) ~ 9n(y)|dy, and recall that 7 f

7L~z

; = Suph’{: I[J[!{ —_ I *
at ] .fu(y) - f('!})[r]y _ L({n{) ifjl}wh?re I st
- -"*(H =
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definite matrices which minimize 7 and [ respectively. Then
i .

LH) < [L(H)=L*(H)| + L\

using (3.1

iiine the above inequality, 1t 1s easy o verifyv that
Using 1 : - .

PO W) = F)ldy > P(L(H) >

f‘(/ galt) = fl)dy ~ =) L p . A
| f(w)dy l.) P(L(I"

f(/ anly) — [(y)ldy ) f !’(!..H‘- i < J

‘l n‘r) -,frJ ]" f "‘i. + ’(. _] — .I .'
(/ 9n(¥) — f(y)|dy 4) I f.(nii —1,. ) =

I (st lava) = [1130) - £(v)

bandwidth matrix ———TI;, 5. We recall that 9n 18 also a d-variate kernel density estimate with a kernel
A" and same bandwidth matrix.

: = Ly o1 ¢ = -1 " (4 ; ' -

In fact. gn(v) = LY K (1(9 - )&3)) and f(y) = =7 2i=1 K (5(y — X)), where A =

——. Clearly A = o(1) and nA\? — o0, as n increased. Therefore using Theorem | (Devrove (1983)).

we see that for every e > 0 there exists constants 71, ny and 75, n,, such that

dy, where f is a d-variate kernel density estimate with kernel A and

P / g lt) — () ldy > z) £ BT g%

1 € . R -
w0 P (L (cmgtond) >5) = P ([ 150 - sz ) <z

Let ng = max(n;. no) and r = max(r1, r2). Substituting the above inequalities in the right side of
(3.2). we get

P(L(h) >€) <2e7™, n > ny.

his completes the proof of Theorem 1.
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